AI 应用开发中,总有一些让人头疼的问题:敏感信息(比如 API-KEY)怎么安全存储?模型参数需要频繁调整怎么办?Prompt 模板改来改去,每次都得重启服务,太麻烦了!别急,今天我们就来聊聊如何用 Nacos 解决这些问题。
无论是使用 Nacos-Controller 实现配置的双向同步,还是直接在应用中接入 Nacos SDK 以获得更高级的配置管理特性,都能显著提升配置管理的灵活性、安全性和可维护性。使用 Nacos,您能够更好地管理和优化您的应用配置,从而提高系统的稳定性和可靠性。
本文介绍了使用阿里云实时数仓 Hologres、函数计算 FC 和通义大模型 Qwen3 构建企业级数据分析 Agent 的方法。通过 MCP(模型上下文协议)标准化接口,解决大模型与外部工具和数据源集成的难题。Hologres 提供高性能数据分析能力,支持实时数据接入和湖仓一体分析;函数计算 FC 提供弹性、安全的 Serverless 运行环境;Qwen3 具备强大的多语言处理和推理能力。方案结合 ModelScope 的 MCP Playground,实现高效的服务化部署,帮助企业快速构建跨数据源、多步骤分解的数据分析 Agent,优化数据分析流程并降低成本。
本文将从概念和宏观角度理解什么是流处理。 RocketMQ 5.0,学习 RocketMQ 提供的轻量流处理引擎 RStreams,了解其特性和原理。学习 RocketMQ 的流数据库 RSQLDB,通过流存储和流计算的深度结合,看它如何进一步降低流处理使用门槛。
基于 IaC 的理念,通过定义一个模板,使用 ROS 提供的 Terraform 托管服务进行自动化部署,可以非常高效快捷地部署任意云资源和应用(比如 ChatTTS 服务)。相比于手动部署或者通过 API、SDK 的部署方式,有着高效、稳定等诸多优势,也是服务上云的最佳实践。
iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。
近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
大模型性能的持续提升,进一步挖掘了 RAG 的潜力,RAG 将检索系统与生成模型相结合,带来诸多优势,如实时更新知识、降低成本等。点击本文,为您梳理 RAG 的基本信息,并介绍提升大模型生成结果的方法,快一起看看吧~