下述报告主要整理自各大网站发布的对 2025 年可观测趋势的预测,作者合并同类项汇总 10 个共性的趋势,欢迎大家一起讨论。
AI 应用开发中,总有一些让人头疼的问题:敏感信息(比如 API-KEY)怎么安全存储?模型参数需要频繁调整怎么办?Prompt 模板改来改去,每次都得重启服务,太麻烦了!别急,今天我们就来聊聊如何用 Nacos 解决这些问题。
通义灵码Project Rules是一种针对AI代码生成的个性化规则设定工具,旨在解决AI生成代码不精准或不符合开发者需求的问题。通过定义编码规则(如遵循SOLID原则、OWASP安全规范等),用户可引导模型生成更符合项目风格和偏好的代码。例如,在使用阿里云百炼服务平台的curl调用时,通义灵码可根据预设规则生成Java代码,显著提升代码采纳率至95%以上。此外,还支持技术栈、应用逻辑设计、核心代码规范等多方面规则定制,优化生成代码的质量与安全性。
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
本文将从概念和宏观角度理解什么是流处理。 RocketMQ 5.0,学习 RocketMQ 提供的轻量流处理引擎 RStreams,了解其特性和原理。学习 RocketMQ 的流数据库 RSQLDB,通过流存储和流计算的深度结合,看它如何进一步降低流处理使用门槛。
基于 IaC 的理念,通过定义一个模板,使用 ROS 提供的 Terraform 托管服务进行自动化部署,可以非常高效快捷地部署任意云资源和应用(比如 ChatTTS 服务)。相比于手动部署或者通过 API、SDK 的部署方式,有着高效、稳定等诸多优势,也是服务上云的最佳实践。
本次文根据峰会演讲内容整理:分享在大模型时代基于湖仓一体的数据产品演进,以及我们观察到的一些智能开发相关的新范式。
近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
大模型性能的持续提升,进一步挖掘了 RAG 的潜力,RAG 将检索系统与生成模型相结合,带来诸多优势,如实时更新知识、降低成本等。点击本文,为您梳理 RAG 的基本信息,并介绍提升大模型生成结果的方法,快一起看看吧~