本文介绍如何使用TFJob在ASK+ECI场景下,快速完成基于GPU的TensorFlow分布式训练任务。
Serverless 架构下,虽然我们更多精力是关注我们的业务代码,但是实际上对于一些配置和成本也是需要进行关注的,并且在必要的时候,还需要根据配置与成本进行对我们的 Serverless 应用进行配置优化和代码优化。
本方案实现在阿里云Serverless函数计算服务中搭建图片批量打马赛克服务,具备自动将用户上传到OSS桶内的图片批量打上马赛克功能,实现用户敏感信息自动化处理。
Serverless的理念是即时弹性,用完即走。服务并非长时间运行,这也就意味着像websocket这种长链接的请求模式看起来并不适合Serverless,但是否有其他的办法既能满足长连接模式请求,也能够利用Serverless本身特性呢?答案是肯定的,我们通过API网关来解决webscoket连接的问题,然后由网关触达Serverless服务的后端,本文以弹幕场景为例来介绍如何使用Serverless架构实现全双工通信。
Kubernetes 作为当今云原生业界标准,具备良好的生态以及跨云厂商能力。Kubernetes 很好的抽象了 IaaS 资源交付标准,使得云资源交付变的越来越简单,与此同时用户期望更多的聚焦于业务自身,做到面向应用交付,Serverless 理念也因此而生。 那么如何通过原生 k8s 提供Serverless 能力?如何实现GPU等异构资源按需使用?这里给大家介绍一下我们在Serverless Kubernetes 开发实践:异构资源,按需使用。
本文将AI项目与Serverless架构进行结合,在Serverless架构下用20行Python代码搞定图像分类和预测。
当前阿里云函数计算支持两种类型的函数:事件函数和 HTTP 函数。其中 HTTP 函数结合 HTTP 触发器,能够支持用户直接通过 HTTP 请求利用 Restful API 的方式发起函数调用;通过这种方式,用户无需集成函数计算提供的 SDK 就能实现函数调用,更好地同已有系统的组件及 Web 服...