DeepSeek 凭借其卓越的性能和广泛的应用场景,迅速在全球范围内获得了极高的关注度和广泛的用户基础。DeepSeek-R1-Distill 是使用 DeepSeek-R1 生成的样本对开源模型进行蒸馏得到的小模型,拥有更小参数规模,推理成本更低,基准测试同样表现出色。依托于函数计算 FC 算力,Serverless+ AI 开发平台 CAP 现已提供模型服务、应用模版两种部署方式辅助您部署 DeepSeek R1 系列模型。完成模型部署后,您即可与模型进行对话体验;或以 API 形式进行调用,接入 AI 应用中。欢迎您立即体验。
本文将会分享Hologres RoaringBitmap 方案在画像分析的应用实践,实现更快更准的画像分析。
本文将展示如何基于阿里云PAI灵骏智算服务,在通义千问开源模型之上进行高效分布式继续预训练、指令微调、模型离线推理验证以及在线服务部署。
本文介绍的实现方式属于应用级限制,应用级限流方式只是单应用内的请求限流,不能进行全局限流。要保证系统的抗压能力,限流是一个必不可少的环节,虽然可能会造成某些用户的请求被丢弃,但相比于突发流量造成的系统宕机来说,这些损失一般都在可以接受的范围之内。
LISA是Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning的简写,由UIUC联合LMFlow团队于近期提出的一项LLM微调技术,可实现把全参训练的显存使用降低到之前的三分之一左右,而使用的技术方法却是非常简单。
iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。
本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。