开发者社区 > ModelScope模型即服务 > 正文

单模态和多模态地址使用微调后的模型预测得到的结果与原生的不一致,ModelScope问题什么原因?

"{'scores': [0.49239251017570496, 0.500828742980957, 0.500383734703064]}
{'scores': [0.5252724289894104, 0.5078459978103638, 0.5178839564323425]},单模态和多模态地址使用微调后的模型预测得到的结果与原生的不一致,不知这个ModelScope问题是什么原因?

预测地址:
multi_modal_inputs = {
""source_sentence"": ['杭州余杭东方未来学校附近世纪华联商场(金家渡北苑店)'],
""first_sequence_gis"": [[[13159, 13295, 13136, 13157, 13158, 13291, 13294, 74505, 74713, 75387, 75389, 75411], [3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4], [3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4], [[1254, 1474, 1255, 1476], [1253, 1473, 1256, 1476], [1247, 1473, 1255, 1480], [1252, 1475, 1253, 1476], [1253, 1475, 1253, 1476], [1252, 1471, 1254, 1475], [1254, 1473, 1256, 1475], [1238, 1427, 1339, 1490], [1238, 1427, 1339, 1490], [1252, 1474, 1255, 1476], [1252, 1474, 1255, 1476], [1249, 1472, 1255, 1479]], [[24, 23, 15, 23], [24, 28, 15, 18], [31, 24, 22, 22], [43, 13, 37, 13], [43, 6, 35, 6], [31, 32, 22, 14], [19, 30, 9, 16], [24, 30, 15, 16], [24, 30, 15, 16], [29, 24, 20, 22], [28, 25, 19, 21], [31, 26, 22, 20]], ""120.08802231437534,30.343853313981505""]],
""sentences_to_compare"": [
'良渚街道金家渡北苑42号世纪华联超市(金家渡北苑店)',
'金家渡路金家渡中苑南区70幢金家渡中苑70幢',
'金家渡路140-142号附近家家福足道(金家渡店)'
],
""second_sequence_gis"": [
[[13083, 13081, 13084, 13085, 13131, 13134, 13136, 13147, 13148], [3, 3, 3, 3, 3, 3, 3, 3, 3], [3, 4, 4, 4, 4, 4, 4, 4, 4], [[1248, 1477, 1250, 1479], [1248, 1475, 1250, 1476], [1247, 1478, 1249, 1481], [1249, 1479, 1249, 1480], [1249, 1476, 1250, 1476], [1250, 1474, 1252, 1478], [1247, 1473, 1255, 1480], [1250, 1478, 1251, 1479], [1249, 1478, 1250, 1481]], [[30, 26, 21, 20], [32, 43, 23, 43], [33, 23, 23, 23], [31, 13, 22, 13], [25, 43, 16, 43], [20, 33, 10, 33], [26, 29, 17, 17], [18, 21, 8, 21], [26, 23, 17, 23]], ""120.08075205680345,30.34697777462197""],
[[13291, 13159, 13295, 74713, 75387, 75389, 75411], [3, 3, 3, 4, 4, 4, 4], [3, 4, 4, 4, 4, 4, 4], [[1252, 1471, 1254, 1475], [1254, 1474, 1255, 1476], [1253, 1473, 1256, 1476], [1238, 1427, 1339, 1490], [1252, 1474, 1255, 1476], [1252, 1474, 1255, 1476], [1249, 1472, 1255, 1479]], [[28, 28, 19, 18], [22, 16, 12, 16], [23, 24, 13, 22], [24, 30, 15, 16], [27, 20, 18, 20], [27, 21, 18, 21], [30, 24, 21, 22]], ""120.0872539617001,30.342783672056953""],
[[13291, 13290, 13294, 13295, 13298], [3, 3, 3, 3, 3], [3, 4, 4, 4, 4], [[1252, 1471, 1254, 1475], [1253, 1469, 1255, 1472], [1254, 1473, 1256, 1475], [1253, 1473, 1256, 1476], [1255, 1467, 1258, 1472]], [[32, 25, 23, 21], [26, 33, 17, 33], [21, 19, 11, 19], [25, 21, 16, 21], [21, 33, 11, 33]], ""120.08839673752281,30.34156156893651""]
]
}

# 单模态输入,只包括需要排序的文本
single_modal_inputs = {
    ""source_sentence"": ['杭州余杭东方未来学校附近世纪华联商场(金家渡北苑店)'],
    ""sentences_to_compare"": [
        '良渚街道金家渡北苑42号世纪华联超市(金家渡北苑店)',
        '金家渡路金家渡中苑南区70幢金家渡中苑70幢',
        '金家渡路140-142号附近家家福足道(金家渡店)'
        ]
    }          原生模型预测结果:

{'scores': [0.9997552633285522, 0.027718106284737587, 0.03500296175479889]}
{'scores': [0.9986912608146667, 0.0075200702995061874, 0.014017169363796711]}"

展开
收起
小小爱吃香菜 2024-06-26 08:30:38 28 0
1 条回答
写回答
取消 提交回答
  • 用原来的数据集训练一下看看。此回答整理自钉群“魔搭ModelScope开发者联盟群 ①”

    2024-06-28 19:58:47
    赞同 展开评论 打赏

ModelScope旨在打造下一代开源的模型即服务共享平台,为泛AI开发者提供灵活、易用、低成本的一站式模型服务产品,让模型应用更简单!欢迎加入技术交流群:微信公众号:魔搭ModelScope社区,钉钉群号:44837352

热门讨论

热门文章

相关电子书

更多
视觉AI能力的开放现状及ModelScope实战 立即下载
ModelScope助力语音AI模型创新与应用 立即下载
低代码开发师(初级)实战教程 立即下载