在 Apache Flink CDC 中同步多张数据库表时,你可以采取以下两种主要方法:
单表单任务:
每个Flink作业仅负责一个数据库表的CDC数据同步。这种方式清晰明了,易于管理和调试,每张表的源连接器配置、转换逻辑以及目标sink都可以独立定制和优化。
示例:
多表单任务(批量同步模式):
在Flink 1.14及以上版本中,通过Flink SQL DDL可以实现一个作业同步多个表的功能。不过需要注意的是,Flink CDC原生的DataStream API中一个job无法直接同时处理多个表的CDC,但在SQL API中可以构建一个包含多个CREATE TABLE
语句的DAG,每个表都是一个单独的CDC source。
示例:
CREATE TABLE table1 (
...
) WITH (
'connector' = 'debezium-postgres',
'...' -- table1的配置
);
CREATE TABLE table2 (
...
) WITH (
'connector' = 'debezium-mysql',
'...' -- table2的配置
);
-- 对于table1和table2的同步操作
INSERT INTO sink_table1 SELECT ... FROM table1;
INSERT INTO sink_table2 SELECT ... FROM table2;
总之,在决定使用哪种方案时,需要考虑的因素包括但不限于:
根据你的具体需求来选择最适合的方法。对于大部分情况,尤其是表间关系相对独立的场景,第一种方法更为常见和推荐。而对于需要高度集成和协调处理多表变更的场景,第二种方法可能更适合。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。