机器学习PAI最后生成的数据表中,是不包含raw_feature的,我设置了7个特征,最后生成的features中,只有六个id_feature的特征?
在机器学习PAI中,如果你设置了7个特征,但在最后生成的数据表中只包含了6个id_feature的特征,这可能是由于以下原因:
原始特征处理:在特征工程阶段,可能有一些预处理步骤导致原始特征(raw_feature)被转换、合并或删除。例如,某个特征可能与其它特征高度相关,因此被剔除以防止多重共线性。
特征选择:在构建模型之前,你可能进行了特征选择过程,其中某些特征(包括raw_feature)由于其对模型预测能力的贡献较小而被排除在外。
数据清洗问题:原始数据可能存在缺失值、异常值或错误值,这些值在数据预处理阶段可能被处理为NaN、NULL或其他特殊值,导致原始特征在最终的特征表中未被显示。
配置错误:检查你的特征工程和模型训练配置,确保所有所需的特征都被正确地包含在内。有可能在设置特征列表时遗漏了raw_feature。
特征重命名或合并:在特征工程过程中,可能对原始特征进行了重命名或与其他特征进行了合并,导致原始特征名称不再出现在最终的特征表中。
为了找出具体原因,你可以检查以下内容:
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。