ModelScope中我看模型merge后的模型都是pytorch的结果,我可以用pytorch去加载模型推理吗?
是的,ModelScope确实可以使用PyTorch加载和推理模型。因为ModelScope底层采用了Hugging Face的Transformers库,而后者支持PyTorch和TensorFlow两种深度学习框架。
所以,如果您有使用PyTorch的经验,可以在ModelScope中继续使用PyTorch进行模型的加载和推理。但是需要注意的是,在ModelScope中加载模型的方法可能与常规的PyTorch有所不同,因为它涉及到了对模型和tokenizer的整合。
是的,您可以在本地安装好 PyTorch 的情况下使用 PyTorch 加载和推理模型,而不必关心它们最初是如何合并的。只需要将模型的名字传递给 load
函数即可。
需要注意的是,某些模型可能需要一些额外的参数或预处理才能正确地工作,所以在加载前需要仔细阅读文档以确保参数和输入格式正确无误。
是的,您可以使用PyTorch来加载和推理ModelScope中合并后的模型。在ModelScope中,合并后的模型通常以.pth或.pt为文件扩展名保存,这是PyTorch默认的模型文件格式。
要使用PyTorch加载和推理模型,您需要按照以下步骤进行操作:
安装PyTorch:首先,确保您已经安装了适当版本的PyTorch。您可以从PyTorch官方网站(https://pytorch.org/)下载并安装最新版本的PyTorch。
导入必要的库:在Python脚本中,您需要导入PyTorch库和其他必要的库。例如,您可以使用以下代码导入所需的库:
import torch
from torchvision import transforms
加载模型:使用torch.load()
函数加载合并后的模型文件。例如,如果您的模型文件名为"model.pth",则可以使用以下代码加载模型:
model = torch.load("model.pth")
预处理输入数据:根据您的任务需求,对输入数据进行必要的预处理。这可能包括图像大小调整、归一化等操作。例如,对于图像分类任务,您可以使用以下代码对图像进行预处理:
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
推理:使用加载的模型对输入数据进行推理。根据您使用的框架和任务类型,推理过程可能会有所不同。例如,对于图像分类任务,您可以使用以下代码进行推理:
input_data = ... # 输入数据,可以是图像或文本等
output = model(input_data) # 使用模型进行推理
直接用llm_infer.py就可以了. 后面(今天)会把这个函数放到swift内, 就会比较方便调用,此回答整理自钉群“魔搭ModelScope开发者联盟群 ①”