开发者社区 > 大数据与机器学习 > 人工智能平台PAI > 正文

在机器学习PAI利用ADAGRAD在线优化初始模型为逻辑回归的算法时,混淆矩阵怎么看着不正常呢?

在机器学习PAI利用ADAGRAD在线优化初始模型为逻辑回归的算法时,混淆矩阵怎么看着不正常呢?
1b72bab3c39897ab363489b48535ead5.png

展开
收起
乐天香橙派 2023-09-19 19:18:38 261 0
1 条回答
写回答
取消 提交回答
  • 如果您在机器学习PAI中使用ADAGRAD算法进行逻辑回归模型的在线优化,并且在混淆矩阵上看到了异常结果,我可以尝试提供一些常见的问题和解决方案供您参考。

    样本不平衡:如果数据集中的类别不平衡(某些类别的样本数量远远超过其他类别),混淆矩阵中的统计量可能会出现偏差。在这种情况下,您可以考虑使用其他评估指标,如精确度、召回率、F1分数等,来更全面地评估模型性能。

    特征选择的影响:选择不合适的特征或忽略重要的特征可能导致模型的性能下降,从而在混淆矩阵中产生不正常的结果。请确保您选择了适当的特征,并仔细检查特征工程的过程。

    模型调优问题:ADAGRAD算法的性能可能会受到学习率和正则化参数等超参数的影响。请尝试调整超参数的值,以获得更好的结果。可以使用交叉验证或网格搜索等技术来找到最佳的超参数组合。

    数据质量问题:混淆矩阵异常可能与数据质量有关。请确保数据集没有错误、缺失值或异常值,并且已经进行了适当的预处理和清洗。

    如果您能提供更多关于异常结果和数据集的详细信息,我将尽力提供更具体的建议和解决方案。

    2023-09-27 14:09:01
    赞同 展开评论 打赏

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

相关产品

  • 人工智能平台 PAI
  • 热门讨论

    热门文章

    相关电子书

    更多
    微博机器学习平台架构和实践 立即下载
    机器学习及人机交互实战 立即下载
    大数据与机器学习支撑的个性化大屏 立即下载