问题1:机器学习PAI我现在有一批报文,每条报文有10几个和设备相关的特征,需要将这批报文根据特征分类归一到一个设备上,有模型推荐下么?
问题2:那像这种情况,有点类似指纹识别的那种。我应该用什么模型 我大概看了下,好像不太适用,他更多的是处理文本,而我这边的输入特征基本上都是强特征,没办法做word2evc这种
对于问题1,你可以考虑使用聚类算法来将报文根据特征分类归一到一个设备上。聚类算法可以根据数据的相似性将其分组成不同的簇,每个簇代表一个设备。常用的聚类算法包括K-means、层次聚类、DBSCAN等。在使用聚类算法时,你需要将报文的特征作为输入数据,然后根据特征的相似性将其分配到相应的设备簇中。
对于问题2,如果你的输入特征主要是强特征而不是文本数据,那么确实不适合直接使用基于文本的模型如word2vec。相反,你可以考虑使用其他机器学习算法来处理你的输入特征。以下是一些可能适用的机器学习模型:
支持向量机(Support Vector Machines, SVM):SVM是一种有监督学习模型,可以用于分类和回归任务。它可以处理具有高维特征空间的数据,并且可以通过核函数来学习非线性关系。
随机森林(Random Forest):随机森林是一种集成学习算法,由多个决策树组成。它可以应用于分类和回归任务,并且对于处理强特征的数据集通常表现良好。
XGBoost或LightGBM:这些是梯度提升树算法的变种,也是常用的机器学习模型。它们在处理强特征的数据集时表现出色,能够处理高维数据和非线性关系。
K近邻算法(K-nearest neighbors, KNN):KNN是一种基于实例的学习方法,可以用于分类和回归。它根据输入样本的最近邻来进行分类,对于特征之间的相似性较为敏感。
回答1:分类模型,目标一般可数
回答2:dssm不一定是文本,这边也用dssm做召回,此回答整理自钉群“【EasyRec】推荐算法交流群”
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。