开发者社区 > 大数据与机器学习 > 实时计算 Flink > 正文

Flink CEP 扩展开发的逻辑架构是什么?

已解决

Flink CEP 扩展开发的逻辑架构是什么?

展开
收起
游客lmkkns5ck6auu 2022-08-31 11:18:40 474 0
1 条回答
写回答
取消 提交回答
  • 推荐回答

    用户通过 RuleManager 配置规则并将规则变更事件发布到 Zookeeper 中,RuleListener 监听到事件的变更后,若是新增规则,则会通过 groovy 动态语言编译生成 RulePattern 实例。随着规则的增多,CEP operator 线程处理效率会下降,需要通过把规则分组绑定到对应的 Worker 上来加速规则处理。CEP operator 线程接收到事件后会分发给所有 Worker,Worker 线程处理完后通 过队列发布到 CEP operator 线程,最后发布到下游。最后是数据全链路监控的问题。数据流从收集端经过 Flume 传输,再到消息中心指标计算,然后发布到下游 的实时决策,不允许大量的数据丢失以及数据延迟。基于以上诉求,需要对整体数据链路进行监控,采用 prometheus + grafana 进行 metrics 的收集以及告警。这里主要针对 Flume 消息中间件进行消息堆积以及丢 失的监控。Flink 指标计算主要监控运行状态以及背压情况,下游监控 CEP 决策的时间。对数据链路的监控能 够帮助运维快速定位并解决线上的问题。

    以上内容摘自《Apache Flink 案例集(2022版)》电子书,点击https://developer.aliyun.com/ebook/download/7718 可下载完整版

    2022-08-31 13:21:16
    赞同 展开评论 打赏

实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。

相关产品

  • 实时计算 Flink版
  • 相关电子书

    更多
    MaxCompute架构升级及开放性解读 立即下载
    MaxCompute Serverless 架构演进 立即下载
    阿里云消息队列的 Serverless架构演进 立即下载