业务刚开始的作弊主要是机器作弊,一些人机识别、爬虫识别、黑名单即可识别大部分作弊。我们称之为单点反作弊。 随后作弊者升级到人工作弊,比如大规模人工点击(期间还不断清除介质),或者只点没有转化的行为序列异常,我们会升级到计数、比例、分布等统计策略和行为序列模型TextCNN、BiLSTM,已经能拦截大部分的个人作弊。我们称之为线上反作弊。 接着作弊者又会升级高级的人工作弊,模拟人的点击,尽可能的各种特征上不集中,但是毕竟作弊者要达到收益的话,需要有一定的作弊量,而他们不知道正常点击的真实分布,自然的会在一些维度上出现异常。我们反作弊算法升级到无监督相对熵模型,再后面有样本了升级到有监督的GBDT和Wide&Deep,均是从多个维度和特征上识别作弊。我们称之为面上反作弊。 再后面作弊难度更大了,他们会有众包团伙作弊,我们也升级联通图、图神经网络GraphSage等模型,识别作弊团伙。我们称之为体反作弊。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。