因为用户只与 driver program 打交道,因此只能用 rdd.cache() 去 cache 用户能看到的 RDD。所谓能看到指的是调用 transformation() 后生成的 RDD,而某些在 transformation() 中 Spark 自己生成的 RDD 是不能被用户直接 cache 的,比如 reduceByKey() 中会生成的 ShuffledRDD、MapPartitionsRDD 是不能被用户直接 cache 的。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。