开发者社区> 问答> 正文

flink 1.13.1 使用hive方言,执行hive sql解析报错怎么办?

Hi!

我是用flink 1.13.1版本,执行如下hive sql: CREATE CATALOG tempo_df_hive_default_catalog WITH(     'type' = 'hive',     'default-database' = 'default' ); USE CATALOG tempo_df_hive_default_catalog; CREATE TABLE IF NOT EXISTS default.tempo_blackhole_table (    f0 INT ); use cosldatacenter; INSERT INTO dw_riginfoparam ( large_equip_id, equip_code, equip_name, enqueue_date, shi_total_len, shi_type_width, shi_type_depth, moonpool ) SELECT mle.large_equip_id , mle.equip_code , mle.equip_name , mle.enqueue_date , mle.shi_total_len , mle.shi_type_width , mle.shi_type_depth, CASE WHEN mipd.param_cn = '月池尺寸' THEN mipv.param_value  END AS Moonpool from ods_emp_maindata_iadc_paramvalue mipv INNER JOIN ods_emp_maindata_iadc_paramdef mipd ON mipv.param_id = mipd.param_id    inner JOIN ods_emp_md_large_equip mle ON mipv.SUBJECT_ID= mle.LARGE_EQUIP_ID; INSERT INTO default.tempo_blackhole_table SELECT 1 错误: Caused by: org.apache.hadoop.hive.ql.parse.SemanticException: Line 2:195 Invalid table alias or column reference 'u': (possible column names are: mipv.paramvalue_id, mipv.platform_id, mipv.equipment_id, mipv.param_id, mipv.param_value, mipv.remark, mipv.create_time, mipv.creator, mipv.update_time, mipv.update_person, mipv.record_flag, mipv.subject_id, mipv.output_unit, mipv.show_seq, mipd.param_id, mipd.iadc_id, mipd.param_code, mipd.param_en, mipd.param_cn, mipd.output_standard, mipd.output_unit, mipd.param_type, mipd.param_value, mipd.remark, mipd.create_time, mipd.creator, mipd.update_time, mipd.update_person, mipd.record_flag, mle.large_equip_id, mle.equip_name, mle.equip_type, mle.equip_function, mle.equip_board, mle.ship_yard, mle.manufacturer_date, mle.enqueue_date, mle.dockrepair_date, mle.scrap_date, mle.enqueue_mode, mle.work_for_org, mle.work_in_org, mle.old_age, mle.create_time, mle.creator, mle.update_time, mle.update_person, mle.record_flag, mle.data_timestamp, mle.work_unit_id, mle.work_status, mle.work_location, mle.work_area, mle.equip_code, mle.shi_main_power, mle.shi_total_len, mle.shi_type_width, mle.shi_type_depth, mle.shi_design_draft, mle.shi_total_tonnage, mle.shi_load_tonnage, mle.remark, mle.unit_classification1, mle.unit_classification2) at org.apache.flink.table.planner.delegation.hive.copy.HiveParserSemanticAnalyzer.genAllExprNodeDesc(HiveParserSemanticAnalyzer.java:2467) ~[flink-sql-connector-hive-1.2.2_2.11-1.13.1.jar:1.13.1] at org.apache.flink.table.planner.delegation.hive.copy.HiveParserSemanticAnalyzer.genExprNodeDesc(HiveParserSemanticAnalyzer.java:2421) ~[flink-sql-connector-hive-1.2.2_2.11-1.13.1.jar:1.13.1] at org.apache.flink.table.planner.delegation.hive.HiveParserCalcitePlanner.genSelectLogicalPlan(HiveParserCalcitePlanner.java:2314) ~[flink-sql-connector-hive-1.2.2_2.11-1.13.1.jar:1.13.1] at org.apache.flink.table.planner.delegation.hive.HiveParserCalcitePlanner.genLogicalPlan(HiveParserCalcitePlanner.java:2772) ~[flink-sql-connector-hive-1.2.2_2.11-1.13.1.jar:1.13.1] at org.apache.flink.table.planner.delegation.hive.HiveParserCalcitePlanner.logicalPlan(HiveParserCalcitePlanner.java:285) ~[flink-sql-connector-hive-1.2.2_2.11-1.13.1.jar:1.13.1] at org.apache.flink.table.planner.delegation.hive.HiveParserCalcitePlanner.genLogicalPlan(HiveParserCalcitePlanner.java:273) ~[flink-sql-connector-hive-1.2.2_2.11-1.13.1.jar:1.13.1] at org.apache.flink.table.planner.delegation.hive.HiveParser.analyzeSql(HiveParser.java:326) ~[flink-sql-connector-hive-1.2.2_2.11-1.13.1.jar:1.13.1] at org.apache.flink.table.planner.delegation.hive.HiveParser.processCmd(HiveParser.java:274) ~[flink-sql-connector-hive-1.2.2_2.11-1.13.1.jar:1.13.1] at org.apache.flink.table.planner.delegation.hive.HiveParser.parse(HiveParser.java:217) ~[flink-sql-connector-hive-1.2.2_2.11-1.13.1.jar:1.13.1] at org.apache.flink.table.api.internal.StatementSetImpl.addInsertSql(StatementSetImpl.java:51) ~[flink-table-blink_2.11-1.13.1.jar:1.13.1]*来自志愿者整理的flink邮件归档

展开
收起
EXCEED 2021-12-02 14:48:44 1527 0
1 条回答
写回答
取消 提交回答
  • 好像是sql语法报错,这里面的ELSE呢?

    *来自志愿者整理的FLINK邮件归档

    2021-12-02 15:09:49
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
SQL Server 2017 立即下载
GeoMesa on Spark SQL 立即下载
原生SQL on Hadoop引擎- Apache HAWQ 2.x最新技术解密malili 立即下载