决策树算法根据数据的属性采用树状结构建立决策模型,决策树模型常常用来解决分类和回归问题。常见的算法包括:分类及回归树(Classification And Regression Tree,CART)、ID3(Iterative Dichotomiser 3)、C4.5、卡方自动交互检测(Chi-squared Automatic Interaction Detection,CHAID)、单层决策树(Decision Stump)、随机森林(Random Forest)、多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine,GBM)。
资料来源:《Python机器学习》,文章链接:https://developer.aliyun.com/article/727175
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。