Spark与Flink主要区别在哪?

已解决

如题

展开
收起
大侠赵日天 2020-08-06 15:23:49 4660 分享
分享
版权
举报
1 条回答
写回答
取消 提交回答
  • 采纳回答

    Spark 和 Flink 的不同执行模型带来的最大的区别应该还是在对流计算的支持上。最开始的 Spark Streaming 对流计算想得过于简单,对复杂一点的计算用起来会有不少问题。从 Spark 2.0 开始引入的 Structured Streaming 重新整理了流计算的语义,支持按事件时间处理和端到端的一致性。虽然在功能上还有不少限制,比之前已经有了长足的进步。不过 micro batch 执行方式带来的问题还是存在,特别在规模上去以后性能问题会比较突出。最近 Spark 受一些应用场景的推动,也开始开发持续执行模式。2.3 里的实验性发布还只支持简单的 map 类的操作。从最近 Spark+AI Summit 大会上的介绍来看(下图),会发展成一个和 Flink 的流处理模式比较相似的执行引擎。 https://www.infoq.cn/article/spark-vs-flink

    2020-08-07 17:05:21 举报
    赞同 评论

    评论

    全部评论 (0)

    登录后可评论

MaxCompute(原ODPS)是一项面向分析的大数据计算服务,它以Serverless架构提供快速、全托管的在线数据仓库服务,消除传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,使您经济并高效的分析处理海量数据。

收录在圈子:
MaxCompute 是面向分析的企业级 SaaS 模式云数据仓库,以 Serverless 架构提供快速、全托管的在线数据仓库服务,消除了传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,使您可以经济并高效的分析处理海量数据。数以万计的企业正基于 MaxCompute 进行数据计算与分析,将数据高效转换为业务洞察。

热门讨论

热门文章

还有其他疑问?
咨询AI助理
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等