开发者社区> 问答> 正文

【今日算法】4月24日-如何寻找最长回文子串

回文串是面试常常遇到的问题(虽然问题本身没啥意义),本文就告诉你回文串问题的核心思想是什么。

首先,明确一下什:回文串就是正着读和反着读都一样的字符串

比如说字符串 abaabba 都是回文串,因为它们对称,反过来还是和本身一样。反之,字符串 abac 就不是回文串。

可以看到回文串的的长度可能是奇数,也可能是偶数,这就添加了回文串问题的难度,解决该类问题的核心是双指针。下面就通过一道最长回文子串的问题来具体理解一下回文串问题:

给定一个字符串,验证它是否是回文串,只考虑字母和数字字符,可以忽略字母的大小写。说明:本题中,我们将空字符串定义为有效的回文串。

示例 1:

输入: "A man, a plan, a canal: Panama"
输出: true

示例 2:

输入: "race a car"
输出: false
string longestPalindrome(string s) {}

一、思考

对于这个问题,我们首先应该思考的是,给一个字符串 s,如何在 s 中找到一个回文子串?

有一个很有趣的思路:既然回文串是一个正着反着读都一样的字符串,那么如果我们把 s 反转,称为 s',然后在 ss' 中寻找最长公共子串,这样应该就能找到最长回文子串。

比如说字符串 abacd,反过来是 dcaba,它的最长公共子串是 aba,也就是最长回文子串。

但是这个思路是错误的,比如说字符串 aacxycaa,反转之后是 aacyxcaa,最长公共子串是 aac,但是最长回文子串应该是 aa

虽然这个思路不正确,但是这种把问题转化为其他形式的思考方式是非常值得提倡的

下面,就来说一下正确的思路,如何使用双指针。

寻找回文串的问题核心思想是:从中间开始向两边扩散来判断回文串。对于最长回文子串,就是这个意思:

for 0 <= i < len(s):
    找到以 s[i] 为中心的回文串
    更新答案

但是呢,我们刚才也说了,回文串的长度可能是奇数也可能是偶数,如果是 abba这种情况,没有一个中心字符,上面的算法就没辙了。所以我们可以修改一下:

for 0 <= i < len(s):
    找到以 s[i] 为中心的回文串
    找到以 s[i] 和 s[i+1] 为中心的回文串
    更新答案

PS:读者可能发现这里的索引会越界,等会会处理。

二、代码实现

按照上面的思路,先要实现一个函数来寻找最长回文串,这个函数是有点技巧的:

string palindrome(string& s, int l, int r) {
    // 防止索引越界
    while (l >= 0 && r < s.size()
            && s[l] == s[r]) {
        // 向两边展开
        l--; r++;
    }
    // 返回以 s[l] 和 s[r] 为中心的最长回文串
    return s.substr(l + 1, r - l - 1);
}

为什么要传入两个指针 lr 呢?因为这样实现可以同时处理回文串长度为奇数和偶数的情况

for 0 <= i < len(s):
    # 找到以 s[i] 为中心的回文串
    palindrome(s, i, i)
    # 找到以 s[i] 和 s[i+1] 为中心的回文串
    palindrome(s, i, i + 1)
    更新答案

下面看下 longestPalindrome 的完整代码:

string longestPalindrome(string s) {
    string res;
    for (int i = 0; i < s.size(); i++) {
        // 以 s[i] 为中心的最长回文子串
        string s1 = palindrome(s, i, i);
        // 以 s[i] 和 s[i+1] 为中心的最长回文子串
        string s2 = palindrome(s, i, i + 1);
        // res = longest(res, s1, s2)
        res = res.size() > s1.size() ? res : s1;
        res = res.size() > s2.size() ? res : s2;
    }
    return res;
}

至此,这道最长回文子串的问题就解决了,时间复杂度 O(N^2),空间复杂度 O(1)。

值得一提的是,这个问题可以用动态规划方法解决,时间复杂度一样,但是空间复杂度至少要 O(N^2) 来存储 DP table。这道题是少有的动态规划非最优解法的问题。

另外,这个问题还有一个巧妙的解法,时间复杂度只需要 O(N),不过该解法比较复杂,我个人认为没必要掌握。该算法的名字叫 Manacher's Algorithm(马拉车算法),有兴趣的读者可以自行搜索一下。

来源 | github

作者 | labuladong

展开
收起
游客ih62co2qqq5ww 2020-04-24 22:54:34 1168 0
0 条回答
写回答
取消 提交回答
问答分类:
问答标签:
问答地址:
问答排行榜
最热
最新

相关电子书

更多
数据+算法定义新世界 立即下载
袋鼠云基于实时计算的反黄牛算法 立即下载
Alink:基于Apache Flink的算法平台 立即下载