对于给定的数据帧,如下所示:
id|address|sell_price|market_price|status|start_date|end_date
1|7552 Atlantic Lane|1170787.3|1463484.12|finished|2019/8/2|2019/10/1
1|7552 Atlantic Lane|1137782.02|1422227.52|finished|2019/8/2|2019/10/1
2|888 Foster Street|1066708.28|1333385.35|finished|2019/8/2|2019/10/1
2|888 Foster Street|1871757.05|1416757.05|finished|2019/10/14|2019/10/15
2|888 Foster Street|NaN|763744.52|current|2019/10/12|2019/10/13
3|5 Pawnee Avenue|NaN|928366.2|current|2019/10/10|2019/10/11
3|5 Pawnee Avenue|NaN|2025924.16|current|2019/10/10|2019/10/11
3|5 Pawnee Avenue|Nan|4000000|forward|2019/10/9|2019/10/10
3|5 Pawnee Avenue|2236138.9|1788938.9|finished|2019/10/8|2019/10/9
4|916 W. Mill Pond St.|2811026.73|1992026.73|finished|2019/9/30|2019/10/1
4|916 W. Mill Pond St.|13664803.02|10914803.02|finished|2019/9/30|2019/10/1
4|916 W. Mill Pond St.|3234636.64|1956636.64|finished|2019/9/30|2019/10/1
5|68 Henry Drive|2699959.92|NaN|failed|2019/10/8|2019/10/9
5|68 Henry Drive|5830725.66|NaN|failed|2019/10/8|2019/10/9
5|68 Henry Drive|2668401.36|1903401.36|finished|2019/12/8|2019/12/9
#copy above data and run below code to reproduce dataframe
df = pd.read_clipboard(sep='|')
我想根据以下条件对id
和address
进行分组,并计算mean_ratio
和result_count
:
所需的输出将如下所示:
id address mean_ratio result_count
0 1 7552 Atlantic Lane NaN 0
1 2 888 Foster Street 1.32 1
2 3 5 Pawnee Avenue 1.25 1
3 4 916 W. Mill Pond St. 1.44 3
4 5 68 Henry Drive NaN 2
到目前为止,我已经尝试过:
# convert date
df[['start_date', 'end_date']] = df[['start_date', 'end_date']].apply(lambda x: pd.to_datetime(x, format = '%Y/%m/%d'))
# calculate ratio
df['ratio'] = round(df['sell_price']/df['market_price'], 2)
为了过滤start_date
在2019-09
和2019-10
的范围内:
L = [pd.Period('2019-09'), pd.Period('2019-10')]
c = ['start_date']
df = df[np.logical_or.reduce([df[x].dt.to_period('m').isin(L) for x in c])]
要过滤行状态为“完成”或“失败”,我使用:
mask = df['status'].str.contains('finished|failed')
df[mask]
但是我不知道如何使用这些来获得最终结果。预先感谢您的帮助。
问题来源:stackoverflow
我认为您需要GroupBy.agg
,但是由于某些行被排除在外,例如id = 1
,然后通过DataFrame.join
将它们添加在一起,并在df2
中添加了所有唯一对id
和address
,最后替换在result_count列中缺少值:
df2 = df[['id','address']].drop_duplicates()
print (df2)
id address
0 1 7552 Atlantic Lane
2 2 888 Foster Street
5 3 5 Pawnee Avenue
9 4 916 W. Mill Pond St.
12 5 68 Henry Drive
df[['start_date', 'end_date']] = df[['start_date', 'end_date']].apply(lambda x: pd.to_datetime(x, format = '%Y/%m/%d'))
df['ratio'] = round(df['sell_price']/df['market_price'], 2)
L = [pd.Period('2019-09'), pd.Period('2019-10')]
c = ['start_date']
mask = df['status'].str.contains('finished|failed')
mask1 = np.logical_or.reduce([df[x].dt.to_period('m').isin(L) for x in c])
df = df[mask1 & mask]
df1 = df.groupby(['id', 'address']).agg(mean_ratio=('ratio','mean'),
result_count=('ratio','size'))
df1 = df2.join(df1, on=['id','address']).fillna({'result_count': 0})
print (df1)
id address mean_ratio result_count
0 1 7552 Atlantic Lane NaN 0.0
2 2 888 Foster Street 1.320000 1.0
5 3 5 Pawnee Avenue 1.250000 1.0
9 4 916 W. Mill Pond St. 1.436667 3.0
12 5 68 Henry Drive NaN 2.0
回答来源:stackoverflow
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。