这是我的参考: 来自目录示例 alexnet体系结构的流
我尝试使用alexnet架构训练3个类别。数据集是灰度图像。我将第一个链接修改为分类类模式,然后将CNN模型修改为第二个链接的alexnet。我收到2条错误消息:
ValueError:负尺寸大小是由于输入形状为[?,1,1,384],[3,3,384,384]的'conv2d_83 / convolution'(op:'Conv2D')的值从1中减去3引起的。
如果更改img_width,则img_height = 224,224 TypeError:Dense只能接受1个位置参数(“单位”,),但是您传递了以下位置参数:[4096,(224,224,1)]
CNN中的尺寸是否无法比拟?谢谢
这是代码:
import json
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
#from tensorflow.keras.optimizers import RMSprop
# dimensions of our images.
img_width, img_height = 150,150
train_data_dir = 'data/train'
validation_data_dir = 'data/validation'
nb_train_samples = 200*3
nb_validation_samples = 50*3
epochs = 1
batch_size = 5
if K.image_data_format() == 'channels_first':
input_shape = (1, img_width, img_height)
else:
input_shape = (img_width, img_height, 1)
print(input_shape)
model = Sequential()
model.add(Conv2D(filters=96, input_shape=input_shape,data_format='channels_last', kernel_size=(11,11), strides=(4,4), padding='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
model.add(Conv2D(filters=256, kernel_size=(11,11), strides=(1,1), padding='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='valid'))
model.add(Activation('relu'))
#model.add(MaxPooling2D(pool_size=(2, 2)))
# 4th Convolutional Layer
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='valid'))
model.add(Activation('relu'))
# 5th Convolutional Layer
model.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
model.add(Flatten())
model.add(Dense(4096, input_shape))
model.add(Activation('relu'))
model.add(Dropout(0.4))
model.add(Dense(4096))
model.add(Activation('relu'))
model.add(Dropout(0.4))
model.add(Dense(1000))
model.add(Activation('relu'))
model.add(Dropout(0.4))
# Output Layer
model.add(Dense(3))
model.add(Activation('softmax'))
model.summary()
# Compile the model
model.compile(loss=keras.losses.categorical_crossentropy, optimizer='adam', metrics=['accuracy'])
#model.compile(loss='categorical_crossentropy',optimizer=RMSprop(lr=0.001),metrics=['accuracy'])
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
color_mode='grayscale',
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
color_mode='grayscale',
batch_size=batch_size,
class_mode='categorical')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
model_json = model.to_json()
with open("model_in_json.json", "w") as json_file:
json.dump(model_json, json_file)
model.save_weights("model_weights.h5")
AlexNet适用于input_size227x227。本文提到224x224,但这是一个错字。这并不是说您不能使用其他大小,但是与那时相比,该体系结构将失去意义。当输入大小太小时,出现更多的发音问题。步幅= 2的卷积和最大池化操作降低了后续层的维数。您只用完了尺寸,用ValueError: Negative dimension size caused by subtracting 3 from 1 for 'conv2d_83/convolution'
错误源于model.add(Dense(4096, input_shape))。如果检查keras文档Dense层,您会注意到第二个参数是activation。如果有的话,您应该使用model.add(Dense(4096, input_shape=your_input_shape))。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。