开发者社区> 问答> 正文

Pytorch中的LSTM:如何添加/更改序列长度维度?

我在pytorch中运行LSTM,但据我所知,它只取序列长度= 1。当我将序列长度整形为4或其他数字时,就会得到输入和目标长度不匹配的错误。如果我同时对输入和目标进行整形,那么模型会抱怨它不接受多目标标签。 我的训练数据集有66512行和16839列,目标中有3个类别/类。我想使用批处理大小为200和序列长度为4,即在一个序列中使用4行数据。 请建议如何调整我的模型和/或数据,以便能够运行模型的各种序列长度(例如,4)。

batch_size=200
import torch  
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
train_target = torch.tensor(train_data[['Label1','Label2','Label3']].values.astype(np.float32))
train_target = np.argmax(train_target, axis=1)
train = torch.tensor(train_data.drop(['Label1','Label2','Label3'], axis = 1).values.astype(np.float32)) 
train_tensor = TensorDataset(train.unsqueeze(1), train_target) 
train_loader = DataLoader(dataset = train_tensor, batch_size = batch_size, shuffle = True)

print(train.shape)
print(train_target.shape)

torch.Size([66512, 16839])
torch.Size([66512])


import torch.nn as nn

class LSTMModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, layer_dim, output_dim):
        super(LSTMModel, self).__init__()
        # Hidden dimensions
        self.hidden_dim = hidden_dim

        # Number of hidden layers
        self.layer_dim = layer_dim

        # Building LSTM
        self.lstm = nn.LSTM(input_dim, hidden_dim, layer_dim, batch_first=True)

        # Readout layer
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):

        # Initialize hidden state with zeros
        h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(device)

        # Initialize cell state
        c0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(device)

        out, (hn, cn) = self.lstm(x, (h0,c0))

        # Index hidden state of last time step
        out = self.fc(out[:, -1, :]) 

        return out        


input_dim = 16839
hidden_dim = 100
output_dim = 3
layer_dim = 1

batch_size = batch_size
num_epochs = 1

model = LSTMModel(input_dim, hidden_dim, layer_dim, output_dim)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

criterion = nn.CrossEntropyLoss()
learning_rate = 0.1

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)        

print(len(list(model.parameters())))
for i in range(len(list(model.parameters()))):
    print(list(model.parameters())[i].size())

6
torch.Size([400, 16839])
torch.Size([400, 100])
torch.Size([400])
torch.Size([400])
torch.Size([3, 100])
torch.Size([3])


for epoch in range(num_epochs):
    for i, (train, train_target) in enumerate(train_loader):
        # Load data as a torch tensor with gradient accumulation abilities
        train = train.requires_grad_().to(device)
        train_target = train_target.to(device)

        # Clear gradients w.r.t. parameters
        optimizer.zero_grad()

        # Forward pass to get output/logits
        outputs = model(train)

        # Calculate Loss: softmax --> cross entropy loss
        loss = criterion(outputs, train_target)

        # Getting gradients w.r.t. parameters
        loss.backward()

        # Updating parameters
        optimizer.step()
print('Epoch: {}. Loss: {}. Accuracy: {}'.format(epoch, np.around(loss.item(), 4), np.around(accuracy,4)))

问题来源StackOverflow 地址:/questions/59381695/lstm-in-pytorch-how-to-add-change-sequence-length-dimension

展开
收起
kun坤 2019-12-27 17:46:33 13415 0
1 条回答
写回答
取消 提交回答
  • class torch.nn.LSTM(*args, **kwargs) -- 参数列表: -- input_size: x 的特征维度 -- hidden_size: 隐层的特征维度 -- num_layers: LSTM 层数,默认为1 -- bias: 是否采用 bias, 如果为False,则不采用。默认为True -- batch_first: True, 则输入输出的数据格式为 [batch_size, seq_len, feature_dim],默认为False -- dropout: dropout会在除最后一层外都进行dropout, 默认为0 -- bidirectional: 是否采用双向,默认为False -- 输入数据: -- input: [seq_len, batch_size, input_size], 输入的特征矩阵 -- h_0: [num_layers * num_directions, batch_size, hidden_size], 初始时 h 状态, 默认为0 -- c_0: [num_layers * num_directions, batch_size, hidden_size], 初始时 cell 状态, 默认为0 -- 输出数据: -- output: [seq_len, batch_size, num_directions * hidden_size], 最后一层的所有隐层输出 -- h_n : [num_layers * num_directions, batch, hidden_size], 所有层的最后一个时刻隐层状态 -- c_n : [num_layers * num_directions, batch, hidden_size], 所有层的最后一格时刻的 cell 状态 -- W,b参数: -- weight_ih_l[k]: 与输入x相关的第k层权重 W 参数, W_ii, W_if, W_ig, W_io -- weight_hh_l[k]: 与上一时刻 h 相关的第k层权重参数, W_hi, W_hf, W_hg, W_ho -- bias_ih_l[k]: 与输入x相关的第k层 b 参数, b_ii, b_if, b_ig, b_io -- bias_hh_l[k]: 与上一时刻 h 相关的第k层 b 参数, b_hi, b_hf, b_hg, b_ho

    2021-02-26 14:33:25
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
机器能理解上下文吗-RNN和LSTM神经网络的原理及应用 立即下载
高维向量检索技术在PG中的设计与实践 立即下载
机器能理解上下文吗 RNN和LSTM神经网络的原理及应用 立即下载