开发者社区> 问答> 正文

将锯齿状的边近似为线

我正在努力寻找准确的位置为角落的墨迹,如下图所示:

我的想法是将线与边贴合,然后找到它们的交点。到目前为止,我已经尝试使用各种值为epsilon的cv2.approxPolyDP()来近似这些边,但是这并不是正确的方法。我的简历。approxPolyDP代码给出了以下结果:

理想情况下,这是我想产生(画在油漆上):

对于这类问题是否有CV函数?我已经考虑使用高斯模糊之前的阈值步骤,虽然该方法似乎不是很准确的角落寻找。另外,我希望它对旋转后的图像具有鲁棒性,因此对垂直和水平线条的过滤在没有其他考虑的情况下不一定有效。 代码:*

import numpy as np
from PIL import ImageGrab
import cv2


def process_image4(original_image):  # Douglas-peucker approximation
    # Convert to black and white threshold map
    gray = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
    (thresh, bw) = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

    # Convert bw image back to colored so that red, green and blue contour lines are visible, draw contours
    modified_image = cv2.cvtColor(bw, cv2.COLOR_GRAY2BGR)
    contours, hierarchy = cv2.findContours(bw, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    cv2.drawContours(modified_image, contours, -1, (255, 0, 0), 3)

    # Contour approximation
    try:  # Just to be sure it doesn't crash while testing!
        for cnt in contours:
            epsilon = 0.005 * cv2.arcLength(cnt, True)
            approx = cv2.approxPolyDP(cnt, epsilon, True)
            # cv2.drawContours(modified_image, [approx], -1, (0, 0, 255), 3)
    except:
        pass
    return modified_image


def screen_record():
    while(True):
        screen = np.array(ImageGrab.grab(bbox=(100, 240, 750, 600)))
        image = process_image4(screen)
        cv2.imshow('window', image)
        if cv2.waitKey(25) & 0xFF == ord('q'):
            cv2.destroyAllWindows()
            break

screen_record()

问题来源StackOverflow 地址:/questions/59383119/approximating-jagged-edges-as-lines

展开
收起
kun坤 2019-12-27 11:22:29 506 0
1 条回答
写回答
取消 提交回答
  • 这是一个潜在的解决方案使用阈值+形态操作: 下面是每一步的可视化: 二值图像->形态学运算->近似掩码->检测角点

    这里是角坐标:

    (103, 550)
    (1241, 536)
    

    这是其他图像的结果

    (558, 949)
    (558, 347)
    

    最后是旋转后的图像

    (201, 99)
    (619, 168)
    

    代码

    import cv2
    import numpy as np
    
    # Load image, bilaterial blur, and Otsu's threshold
    image = cv2.imread('1.png')
    mask = np.zeros(image.shape, dtype=np.uint8)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    blur = cv2.bilateralFilter(gray,9,75,75)
    thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
    
    # Perform morpholgical operations
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (10,10))
    opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
    close = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel, iterations=1)
    
    # Find distorted rectangle contour and draw onto a mask
    cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if len(cnts) == 2 else cnts[1]
    rect = cv2.minAreaRect(cnts[0])
    box = cv2.boxPoints(rect)
    box = np.int0(box)
    cv2.drawContours(image,[box],0,(36,255,12),4)
    cv2.fillPoly(mask, [box], (255,255,255))
    
    # Find corners
    mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
    corners = cv2.goodFeaturesToTrack(mask,4,.8,100)
    offset = 25
    for corner in corners:
        x,y = corner.ravel()
        cv2.circle(image,(x,y),5,(36,255,12),-1)
        x, y = int(x), int(y)
        cv2.rectangle(image, (x - offset, y - offset), (x + offset, y + offset), (36,255,12), 3)
        print("({}, {})".format(x,y))
    
    cv2.imshow('image', image)
    cv2.imshow('thresh', thresh)
    cv2.imshow('close', close)
    cv2.imshow('mask', mask)
    cv2.waitKey()
    

    注意:关于扭曲边界框的想法来自于如何从模糊图像中找到扭曲矩形的精确角位置的前面的答案

    2019-12-27 11:22:41
    赞同 展开评论 打赏
问答分类:
问答地址:
问答排行榜
最热
最新

相关电子书

更多
高维向量检索技术在PG中的设计与实践 立即下载
概率图模型 立即下载