开发者社区> 问答> 正文

得到下一个n个交易日的函数太慢了

我已经创建了一个函数,生成的下一个/前n个交易日,但对我的目的是太慢了。有谁能提出加快这个功能的方法吗?

def next_trading_day(start_day, num_trading_days, direction):
    '''returns the next/previous trading day. Business_days determines how many days
    back or into the future, direction determines whether back (-1) or forward (1)'''
    for i in range(0, num_trading_days, direction):
        next_day = start_day +datetime.timedelta(days=direction)
        while next_day.weekday() in [5,6] or next_day not in mcal.get_calendar('NYSE').valid_days(start_date='2000-12-20', end_date='2020-01-10'):
            next_day +=  datetime.timedelta(days=direction)
        start_day = next_day
    return start_day

我是这样使用这个函数的:

import pandas as pd
dict1 = [
        {'date': '2016-11-27'},
        {'date': '2016-11-28'},
{'date': '2016-11-27'},
]
df1= pd.DataFrame(dict1)
df1['date']      = pd.to_datetime(df1['date'])

df['Date-1']=df['date'].dt.date.apply(next_business_day, args=[-1,-1,])

问题来源StackOverflow 地址:/questions/59385992/get-next-n-trading-day-function-is-too-slow

展开
收起
kun坤 2019-12-25 22:10:10 566 0
1 条回答
写回答
取消 提交回答
  • 此检查next_day不在mcal.get_calendar('NYSE')中。valid_days(start_date='2000-12-20', end_date='2020-01-10')非常耗时,因为它需要从7000天的数组中查找。你需要对每一个操作都这样做,所以我认为这是效率低下的主要原因。 您可以通过转换mcal.get_calendar('NYSE')来加快这种检查。valid_days(start_date='2000-12-20', end_date='2020-01-10')设置,将查找从O(N)降低到O(log N)。 但我会选择另一种策略: 编辑:允许任意数量的滞后和领先

    import pandas as pd
    import pandas_market_calendars as mcal
    
    def get_next_trading_day(df1, n):
        trading_days = pd.DataFrame({"date": mcal.get_calendar('NYSE').valid_days(start_date='2016-11-10', end_date='2016-12-01')})
        trading_days['date'] = trading_days['date'].dt.tz_convert(None)
        trading_days = trading_days[~trading_days.date.dt.weekday.isin([5,6])]
        trading_days['next_trading_day'] = trading_days.date.shift(-n)
        # extract unique  date from df1
        df2 = pd.DataFrame({"date": pd.unique(df1['date'])})
    
        # merge with the trading days data (non-trading day will have NA fields)
        df2 = df2.merge(trading_days, on='date', how='outer')
    
        # impute NA values
        df2.sort_values(by='date', inplace=True)
    
        df2['next_trading_day'].fillna(method=  'ffill' if n>0 else 'bfill', inplace=True)
    
        return df1.merge(df2, on='date', how='left')
    
    dict1 = [
            {'date': '2016-11-27'},
            {'date': '2016-11-28'},
            {'date': '2016-11-27'},
            ]
    df1= pd.DataFrame(dict1)
    df1['date']      = pd.to_datetime(df1['date'])
    
    
    print("Next trading day")
    print(get_next_trading_day(df1, 1))
    print()
    
    print("Previous trading day")
    print(get_next_trading_day(df1, -1))
    print()
    
    print("Next next trading day")
    print(get_next_trading_day(df1, 2))
    print()
    
    print("Previous previous trading day")
    print(get_next_trading_day(df1, -2))
    print()
    

    输出

    Next trading day
            date next_trading_day
    0 2016-11-27       2016-11-28
    1 2016-11-28       2016-11-29
    2 2016-11-27       2016-11-28
    
    Previous trading day
            date next_trading_day
    0 2016-11-27       2016-11-25
    1 2016-11-28       2016-11-25
    2 2016-11-27       2016-11-25
    
    Next next trading day
            date next_trading_day
    0 2016-11-27       2016-11-29
    1 2016-11-28       2016-11-30
    2 2016-11-27       2016-11-29
    
    Previous previous trading day
            date next_trading_day
    0 2016-11-27       2016-11-23
    1 2016-11-28       2016-11-23
    2 2016-11-27       2016-11-23
    
    2019-12-25 22:10:21
    赞同 展开评论 打赏
问答分类:
问答地址:
问答排行榜
最热
最新

相关电子书

更多
Android应用启动速度和内存优化实践 立即下载
Android应用-启动速度和内存优化实践 立即下载
低代码开发师(初级)实战教程 立即下载