MaxCompute用户指南:MapReduce:示例程序:Pipeline示例
测试准备
准备好测试程序的 Jar包,假设名字为 mapreduce-examples.jar,本地存放路径为 data\resources。
准备好 Pipeline 的测试表和资源。
创建测试表。create table wc_in (key string, value string);- create table wc_out(key string, cnt bigint);
添加测试资源。
-
add jar data\resources\mapreduce-examples.jar -f;
使用 tunnel 导入数据。
- tunnel upload data wc_in;
导入 wc_in 表的数据文件 data 的内容,如下所示:
- hello,odps
测试步骤
在 odpscmd 中执行 WordCountPipeline,如下所示:
- jar -resources mapreduce-examples.jar -classpath data\resources\mapreduce-examples.jar
- com.aliyun.odps.mapred.open.example.WordCountPipeline wc_in wc_out;
预期结果
作业成功结束后,输出表 wc_out 中的内容,如下所示:
- +------------+------------+
- | key | cnt |
- +------------+------------+
- | hello | 1 |
- | odps | 1 |
- +------------+------------+
代码示例
- package com.aliyun.odps.mapred.open.example;
- import java.io.IOException;
- import java.util.Iterator;
- import com.aliyun.odps.Column;
- import com.aliyun.odps.OdpsException;
- import com.aliyun.odps.OdpsType;
- import com.aliyun.odps.data.Record;
- import com.aliyun.odps.data.TableInfo;
- import com.aliyun.odps.mapred.Job;
- import com.aliyun.odps.mapred.MapperBase;
- import com.aliyun.odps.mapred.ReducerBase;
- import com.aliyun.odps.pipeline.Pipeline;
- public class WordCountPipelineTest {
- public static class TokenizerMapper extends MapperBase {
- Record word;
- Record one;
- @Override
- public void setup(TaskContext context) throws IOException {
- word = context.createMapOutputKeyRecord();
- one = context.createMapOutputValueRecord();
- one.setBigint(0, 1L);
- }
- @Override
- public void map(long recordNum, Record record, TaskContext context)
- throws IOException {
- for (int i = 0; i < record.getColumnCount(); i++) {
- String[] words = record.get(i).toString().split("\\s+");
- for (String w : words) {
- word.setString(0, w);
- context.write(word, one);
- }
- }
- }
- }
- public static class SumReducer extends ReducerBase {
- private Record value;
- @Override
- public void setup(TaskContext context) throws IOException {
- value = context.createOutputValueRecord();
- }
- @Override
- public void reduce(Record key, Iterator<Record> values, TaskContext context)
- throws IOException {
- long count = 0;
- while (values.hasNext()) {
- Record val = values.next();
- count += (Long) val.get(0);
- }
- value.set(0, count);
- context.write(key, value);
- }
- }
- public static class IdentityReducer extends ReducerBase {
- private Record result;
- @Override
- public void setup(TaskContext context) throws IOException {
- result = context.createOutputRecord();
- }
- @Override
- public void reduce(Record key, Iterator<Record> values, TaskContext context)
- throws IOException {
- while (values.hasNext()) {
- result.set(0, key.get(0));
- result.set(1, values.next().get(0));
- context.write(result);
- }
- }
- }
- public static void main(String[] args) throws OdpsException {
- if (args.length != 2) {
- System.err.println("Usage: WordCountPipeline <in_table> <out_table>");
- System.exit(2);
- }
- Job job = new Job();
- /***
- * 构造Pipeline的过程中,如果不指定Mapper的OutputKeySortColumns,PartitionColumns,OutputGroupingColumns,
- * 框架会默认使用其OutputKey作为此三者的默认配置
- ***/
- Pipeline pipeline = Pipeline.builder()
- .addMapper(TokenizerMapper.class)
- .setOutputKeySchema(
- new Column[] { new Column("word", OdpsType.STRING) })
- .setOutputValueSchema(
- new Column[] { new Column("count", OdpsType.BIGINT) })
- .setOutputKeySortColumns(new String[] { "word" })
- .setPartitionColumns(new String[] { "word" })
- .setOutputGroupingColumns(new String[] { "word" })
- .addReducer(SumReducer.class)
- .setOutputKeySchema(
- new Column[] { new Column("word", OdpsType.STRING) })
- .setOutputValueSchema(
- new Column[] { new Column("count", OdpsType.BIGINT)})
- .addReducer(IdentityReducer.class).createPipeline();
- job.setPipeline(pipeline);
- job.addInput(TableInfo.builder().tableName(args[0]).build());
- job.addOutput(TableInfo.builder().tableName(args[1]).build());
- job.submit();
- job.waitForCompletion();
- System.exit(job.isSuccessful() == true ? 0 : 1);
- }
- }
收起
行者武松
2017-10-23 17:49:09
2173
0
0
条回答
写回答
取消
提交回答