通过 JFR 与日志深入探索 JVM - TLAB 原理详解(中)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 通过 JFR 与日志深入探索 JVM - TLAB 原理详解(中)

TLAB 相关源码详解


1. TLAB 类构成

线程初始化的时候,如果 JVM 启用了 TLAB(默认是启用的, 可以通过 -XX:-UseTLAB 关闭),则会初始化 TLAB。

TLAB 包括如下几个 field (HeapWord* 可以理解为堆中的内存地址): src/hotspot/share/gc/shared/threadLocalAllocBuffer.cpp

//静态全局变量
static size_t   _max_size;                          // 所有 TLAB 的最大大小
  static int      _reserve_for_allocation_prefetch;   // CPU 缓存优化 Allocation Prefetch 的保留空间,这里先不用关心
  static unsigned _target_refills;                    //每个 epoch 周期内期望的 refill 次数
//以下是 TLAB 的主要构成 field
HeapWord* _start;                              // TLAB 起始地址,表示堆内存地址都用 HeapWord* 
HeapWord* _top;                                // 上次分配的内存地址
HeapWord* _end;                                // TLAB 结束地址
size_t    _desired_size;                       // TLAB 大小 包括保留空间,表示内存大小都需要通过 size_t 类型,也就是实际字节数除以 HeapWordSize 的值
size_t    _refill_waste_limit;                 // TLAB最大浪费空间,剩余空间不足分配浪费空间限制。在TLAB剩余空间不足的时候,根据这个值决定分配策略,如果浪费空间大于这个值则直接在 Eden 区分配,如果小于这个值则将当前 TLAB 放回 Eden 区管理并从 Eden 申请新的 TLAB 进行分配。 
AdaptiveWeightedAverage _allocation_fraction;  // 当前 TLAB 占用所有TLAB最大空间(一般是Eden大小)的期望比例,通过 EMA 算法采集预测
//以下是我们这里不用太关心的 field
HeapWord* _allocation_end;                    // TLAB 真正可以用来分配内存的结束地址,这个是 _end 结束地址排除保留空间,至于为何需要保留空间我们这里先不用关心,稍后我们会解释这个参数
HeapWord* _pf_top;                            // Allocation Prefetch CPU 缓存优化机制相关需要的参数,这里先不用考虑
size_t    _allocated_before_last_gc;          // GC统计数据采集相关,例如线程内存申请数据统计等等,这里先不用关心
unsigned  _number_of_refills;                 // 线程分配内存数据采集相关,TLAB 剩余空间不足分配次数
unsigned  _fast_refill_waste;                 // 线程分配内存数据采集相关,TLAB 快速分配浪费,什么是快速分配,待会会说到
unsigned  _slow_refill_waste;                 // 线程分配内存数据采集相关,TLAB 慢速分配浪费,什么是慢速分配,待会会说到
unsigned  _gc_waste;                          // 线程分配内存数据采集相关,gc浪费
unsigned  _slow_allocations;                  // 线程分配内存数据采集相关,TLAB 慢速分配计数 
size_t    _allocated_size;                    //分配的内存大小
size_t    _bytes_since_last_sample_point;     // JVM TI 采集指标相关 field,这里不用关心


2. TLAB 初始化

首先是 JVM 启动的时候,全局 TLAB 需要初始化:src/hotspot/share/gc/shared/threadLocalAllocBuffer.cpp

void ThreadLocalAllocBuffer::startup_initialization() {
  //初始化,也就是归零统计数据
  ThreadLocalAllocStats::initialize();
  // 假设平均下来,GC 扫描的时候,每个线程当前的 TLAB 都有一半的内存被浪费,这个每个线程使用内存的浪费的百分比率(也就是 TLABWasteTargetPercent),也就是等于(注意,仅最新的那个 TLAB 有浪费,之前 refill 退回的假设是没有浪费的):1/2 * (每个 epoch 内每个线程期望 refill 次数) * 100
  //那么每个 epoch 内每个线程 refill 次数配置就等于 50 / TLABWasteTargetPercent, 默认也就是 50 次。
  _target_refills = 100 / (2 * TLABWasteTargetPercent);
  // 但是初始的 _target_refills 需要设置最多不超过 2 次来减少 VM 初始化时候 GC 的可能性
  _target_refills = MAX2(_target_refills, 2U);
//如果 C2 JIT 编译存在并启用,则保留 CPU 缓存优化 Allocation Prefetch 空间,这个这里先不用关心,会在别的章节讲述
#ifdef COMPILER2
  if (is_server_compilation_mode_vm()) {
    int lines =  MAX2(AllocatePrefetchLines, AllocateInstancePrefetchLines) + 2;
    _reserve_for_allocation_prefetch = (AllocatePrefetchDistance + AllocatePrefetchStepSize * lines) /
                                       (int)HeapWordSize;
  }
#endif
  // 初始化 main 线程的 TLAB
  guarantee(Thread::current()->is_Java_thread(), "tlab initialization thread not Java thread");
  Thread::current()->tlab().initialize();
  log_develop_trace(gc, tlab)("TLAB min: " SIZE_FORMAT " initial: " SIZE_FORMAT " max: " SIZE_FORMAT,
                               min_size(), Thread::current()->tlab().initial_desired_size(), max_size());
}


每个线程维护自己的 TLAB,同时每个线程的 TLAB 大小不一。TLAB 的大小主要由 Eden 的大小,线程数量,还有线程的对象分配速率决定。 在 Java 线程开始运行时,会先分配 TLAB:src/hotspot/share/runtime/thread.cpp

void JavaThread::run() {
  // initialize thread-local alloc buffer related fields
  this->initialize_tlab();
  //剩余代码忽略
}


分配 TLAB 其实就是调用 ThreadLocalAllocBuffer 的 initialize 方法。 src/hotspot/share/runtime/thread.hpp

void initialize_tlab() {
    //如果没有通过 -XX:-UseTLAB 禁用 TLAB,则初始化TLAB
    if (UseTLAB) {
      tlab().initialize();
    }
}
// Thread-Local Allocation Buffer (TLAB) support
ThreadLocalAllocBuffer& tlab()                 {
  return _tlab; 
}
ThreadLocalAllocBuffer _tlab;


ThreadLocalAllocBuffer 的 initialize 方法初始化 TLAB 的上面提到的我们要关心的各种 field:src/hotspot/share/gc/shared/threadLocalAllocBuffer.cpp

void ThreadLocalAllocBuffer::initialize() {
  //设置初始指针,由于还没有从 Eden 分配内存,所以这里都设置为 NULL
  initialize(NULL,                    // start
             NULL,                    // top
             NULL);                   // end
  //计算初始期望大小,并设置
  set_desired_size(initial_desired_size());
  //所有 TLAB 总大小,不同的 GC 实现有不同的 TLAB 容量, 一般是 Eden 区大小
  //例如 G1 GC,就是等于 (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes,可以理解为年轻代减去Survivor区,也就是Eden区
  size_t capacity = Universe::heap()->tlab_capacity(thread()) / HeapWordSize;
  //计算这个线程的 TLAB 期望占用所有 TLAB 总体大小比例
  //TLAB 期望占用大小也就是这个 TLAB 大小乘以期望 refill 的次数
  float alloc_frac = desired_size() * target_refills() / (float) capacity;
  //记录下来,用于计算 EMA
  _allocation_fraction.sample(alloc_frac);
  //计算初始 refill 最大浪费空间,并设置
  //如前面原理部分所述,初始大小就是 TLAB 的大小(_desired_size) / TLABRefillWasteFraction
  set_refill_waste_limit(initial_refill_waste_limit());
  //重置统计
  reset_statistics();
}


2.1. 初始期望大小是如何计算的呢?

src/hotspot/share/gc/shared/threadLocalAllocBuffer.cpp

//计算初始大小
size_t ThreadLocalAllocBuffer::initial_desired_size() {
  size_t init_sz = 0;
  //如果通过 -XX:TLABSize 设置了 TLAB 大小,则用这个值作为初始期望大小
  //表示堆内存占用大小都需要用占用几个 HeapWord 表示,所以用TLABSize / HeapWordSize
  if (TLABSize > 0) {
    init_sz = TLABSize / HeapWordSize;
  } else {
    //获取当前epoch内线程数量期望,这个如之前所述通过 EMA 预测
    unsigned int nof_threads = ThreadLocalAllocStats::allocating_threads_avg();
    //不同的 GC 实现有不同的 TLAB 容量,Universe::heap()->tlab_capacity(thread()) 一般是 Eden 区大小
    //例如 G1 GC,就是等于 (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes,可以理解为年轻代减去Survivor区,也就是Eden区
    //整体大小等于 Eden区大小/(当前 epcoh 内会分配对象期望线程个数 * 每个 epoch 内每个线程 refill 次数配置)
    //target_refills已经在 JVM 初始化所有 TLAB 全局配置的时候初始化好了
    init_sz  = (Universe::heap()->tlab_capacity(thread()) / HeapWordSize) /
                      (nof_threads * target_refills());
    //考虑对象对齐,得出最后的大小
    init_sz = align_object_size(init_sz);
  }
  //保持大小在  min_size() 还有 max_size() 之间
  //min_size主要由 MinTLABSize 决定
  init_sz = MIN2(MAX2(init_sz, min_size()), max_size());
  return init_sz;
}
//最小大小由 MinTLABSize 决定,需要表示为 HeapWordSize,并且考虑对象对齐,最后的 alignment_reserve 是 dummy object 填充的对象头大小(这里先不考虑 JVM 的 CPU 缓存 prematch,我们会在其他章节详细分析)。
static size_t min_size()                       { 
    return align_object_size(MinTLABSize / HeapWordSize) + alignment_reserve(); 
}


2.2. TLAB 最大大小是怎样决定的呢?

不同的 GC 方式,有不同的方式:

G1 GC 中为大对象(humongous object)大小,也就是 G1 region 大小的一半:src/hotspot/share/gc/g1/g1CollectedHeap.cpp

// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
// must be equal to the humongous object limit.
size_t G1CollectedHeap::max_tlab_size() const {
  return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
}


ZGC 中为页大小的 8 分之一,类似的在大部分情况下 Shenandoah GC 也是每个 Region 大小的 8 分之一。他们都是期望至少有 8 分之 7 的区域是不用退回的减少选择 Cset 的时候的扫描复杂度: src/hotspot/share/gc/shenandoah/shenandoahHeap.cpp

MaxTLABSizeWords = MIN2(ShenandoahElasticTLAB ? RegionSizeWords : (RegionSizeWords / 8), HumongousThresholdWords);

src/hotspot/share/gc/z/zHeap.cpp

const size_t      ZObjectSizeLimitSmall         = ZPageSizeSmall / 8;

对于其他的 GC,则是 int 数组的最大大小,这个和为了填充 dummy object 表示 TLAB 的空区域有关。这个原因之前已经说明了。


3. TLAB 分配内存

当 new 一个对象时,需要调用instanceOop InstanceKlass::allocate_instance(TRAPS)src/hotspot/share/oops/instanceKlass.cpp

instanceOop InstanceKlass::allocate_instance(TRAPS) {
  bool has_finalizer_flag = has_finalizer(); // Query before possible GC
  int size = size_helper();  // Query before forming handle.
  instanceOop i;
  i = (instanceOop)Universe::heap()->obj_allocate(this, size, CHECK_NULL);
  if (has_finalizer_flag && !RegisterFinalizersAtInit) {
    i = register_finalizer(i, CHECK_NULL);
  }
  return i;
}


其核心就是heap()->obj_allocate(this, size, CHECK_NULL)从堆上面分配内存:src/hotspot/share/gc/shared/collectedHeap.inline.hpp

inline oop CollectedHeap::obj_allocate(Klass* klass, int size, TRAPS) {
  ObjAllocator allocator(klass, size, THREAD);
  return allocator.allocate();
}


使用全局的 ObjAllocator 实现进行对象内存分配:src/hotspot/share/gc/shared/memAllocator.cpp

oop MemAllocator::allocate() const {
  oop obj = NULL;
  {
    Allocation allocation(*this, &obj);
    //分配堆内存,继续看下面一个方法
    HeapWord* mem = mem_allocate(allocation);
    if (mem != NULL) {
      obj = initialize(mem);
    } else {
      // The unhandled oop detector will poison local variable obj,
      // so reset it to NULL if mem is NULL.
      obj = NULL;
    }
  }
  return obj;
}
HeapWord* MemAllocator::mem_allocate(Allocation& allocation) const {
  //如果使用了 TLAB,则从 TLAB 分配,分配代码继续看下面一个方法
  if (UseTLAB) {
    HeapWord* result = allocate_inside_tlab(allocation);
    if (result != NULL) {
      return result;
    }
  }
  //否则直接从 tlab 外分配
  return allocate_outside_tlab(allocation);
}
HeapWord* MemAllocator::allocate_inside_tlab(Allocation& allocation) const {
  assert(UseTLAB, "should use UseTLAB");
  //从当前线程的 TLAB 分配内存,TLAB 快分配
  HeapWord* mem = _thread->tlab().allocate(_word_size);
  //如果没有分配失败则返回
  if (mem != NULL) {
    return mem;
  }
  //如果分配失败则走 TLAB 慢分配,需要 refill 或者直接从 Eden 分配
  return allocate_inside_tlab_slow(allocation);
}


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
2天前
|
SQL 关系型数据库 MySQL
MySQL事务日志-Undo Log工作原理分析
事务的持久性是交由Redo Log来保证,原子性则是交由Undo Log来保证。如果事务中的SQL执行到一半出现错误,需要把前面已经执行过的SQL撤销以达到原子性的目的,这个过程也叫做"回滚",所以Undo Log也叫回滚日志。
MySQL事务日志-Undo Log工作原理分析
|
11天前
|
Rust 安全 Java
JVM原理与实现——Synchronized关键字
在多线程Java程序中,`Synchronized`关键字用于确保线程安全。本文深入探讨其工作原理,通过分析字节码`monitorenter`和`monitorexit`,解释JVM如何实现同步机制。文章展示了`Synchronized`方法的编译结果,并详细解析了轻量锁和重度锁的实现过程,包括Mark Word的状态变化及CAS操作的应用。最后简要介绍了`ObjectMonitor::enter()`函数在获取重度锁时的作用。
JVM原理与实现——Synchronized关键字
|
3月前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1746 14
MySQL事务日志-Redo Log工作原理分析
|
3月前
|
存储 监控 算法
美团面试:说说 G1垃圾回收 底层原理?说说你 JVM 调优的过程 ?
尼恩提示: G1垃圾回收 原理非常重要, 是面试的重点, 大家一定要好好掌握
美团面试:说说 G1垃圾回收 底层原理?说说你 JVM 调优的过程  ?
|
3月前
|
SQL 存储 关系型数据库
美团面试:binlog、redo log、undo log的底层原理是什么?它们分别实现ACID的哪个特性?
老架构师尼恩在其读者交流群中分享了关于 MySQL 中 redo log、undo log 和 binlog 的面试题及其答案。这些问题涵盖了事务的 ACID 特性、日志的一致性问题、SQL 语句的执行流程等。尼恩详细解释了这些日志的作用、所在架构层级、日志形式、缓存机制以及写文件方式等内容。他还提供了多个面试题的详细解答,帮助读者系统化地掌握这些知识点,提升面试表现。此外,尼恩还推荐了《尼恩Java面试宝典PDF》和其他技术圣经系列PDF,帮助读者进一步巩固知识,实现“offer自由”。
美团面试:binlog、redo log、undo log的底层原理是什么?它们分别实现ACID的哪个特性?
|
2月前
|
存储 监控 Java
JVM进阶调优系列(8)如何手把手,逐行教她看懂GC日志?| IT男的专属浪漫
本文介绍了如何通过JVM参数打印GC日志,并通过示例代码展示了频繁YGC和FGC的场景。文章首先讲解了常见的GC日志参数,如`-XX:+PrintGCDetails`、`-XX:+PrintGCDateStamps`等,然后通过具体的JVM参数和代码示例,模拟了不同内存分配情况下的GC行为。最后,详细解析了GC日志的内容,帮助读者理解GC的执行过程和GC处理机制。
|
3月前
|
Arthas 监控 Java
JVM知识体系学习七:了解JVM常用命令行参数、GC日志详解、调优三大方面(JVM规划和预调优、优化JVM环境、JVM运行出现的各种问题)、Arthas
这篇文章全面介绍了JVM的命令行参数、GC日志分析以及性能调优的各个方面,包括监控工具使用和实际案例分析。
88 3
|
4月前
|
存储 缓存 关系型数据库
redo log 原理解析
redo log 原理解析
61 0
redo log 原理解析
|
4月前
|
设计模式 SQL 安全
PHP中的设计模式:单例模式的深入探索与实践在PHP的编程实践中,设计模式是解决常见软件设计问题的最佳实践。单例模式作为设计模式中的一种,确保一个类只有一个实例,并提供全局访问点,广泛应用于配置管理、日志记录和测试框架等场景。本文将深入探讨单例模式的原理、实现方式及其在PHP中的应用,帮助开发者更好地理解和运用这一设计模式。
在PHP开发中,单例模式通过确保类仅有一个实例并提供一个全局访问点,有效管理和访问共享资源。本文详细介绍了单例模式的概念、PHP实现方式及应用场景,并通过具体代码示例展示如何在PHP中实现单例模式以及如何在实际项目中正确使用它来优化代码结构和性能。
60 2
|
3月前
|
前端开发 Java 应用服务中间件
JVM进阶调优系列(1)类加载器原理一文讲透
本文详细介绍了JVM类加载机制。首先解释了类加载器的概念及其工作原理,接着阐述了四种类型的类加载器:启动类加载器、扩展类加载器、应用类加载器及用户自定义类加载器。文中重点讲解了双亲委派机制,包括其优点和缺点,并探讨了打破这一机制的方法。最后,通过Tomcat的实际应用示例,展示了如何通过自定义类加载器打破双亲委派机制,实现应用间的隔离。