最佳实践—如何高效使用IN查询

简介: 本文将介绍如何在PolarDB-X中做IN查询时,选择最佳的Values个数。

功能介绍

实际场景中经常需要根据一些常量指标做IN查询,其中IN的字段是分区键。例如在电商场景中,所有订单都会记录到订单表Order,此表按照订单ID进行拆分,一个买家经常会根据已购买的订单列表,查询这些订单的具体信息。假设用户已购买的订单数是2,那么会产生2个值的IN条件查询,理论上查询会路由到两个2分片。查询SQL示例:


SELECT * FROM ORDER WHERE ORDER_ID IN (id1,id2)

随着用户购买的订单数增加,查询订单信息的IN值数量也会增加,这样一次查询很可能会路由到所有的分片,导致RT变高。下图展示了IN值数量、扫描分片数和RT之间的关系。

70..png

功能介绍

实际场景中经常需要根据一些常量指标做IN查询,其中IN的字段是分区键。例如在电商场景中,所有订单都会记录到订单表Order,此表按照订单ID进行拆分,一个买家经常会根据已购买的订单列表,查询这些订单的具体信息。假设用户已购买的订单数是2,那么会产生2个值的IN条件查询,理论上查询会路由到两个2分片。查询SQL示例:


SELECT * FROM ORDER WHERE ORDER_ID IN (id1,id2)

随着用户购买的订单数增加,查询订单信息的IN值数量也会增加,这样一次查询很可能会路由到所有的分片,导致RT变高。下图展示了IN值数量、扫描分片数和RT之间的关系。

80..png

比对测试

在兼顾RT和吞吐的场景下,确定合理的IN查询的值的数量。在规格2×16C64G的节点,针对一张分表数量为64,分表记录数为百万级别的表在不同值数量、不同并发下做测试。在内核版本5.4.8-16069335(包含)之后针对IN查询进一步完善了动态裁剪分表的能力,下发的物理SQL也会裁剪掉多余的Values,下面是比对测试的结果。

  1. 在不同并发下,不同Values值数量下测试,开启IN查询动态裁剪能力下,查看RT变化。90.png
  2. 在不同并发下,不同Values值数量下测试,开启IN查询动态裁剪能力下,查看吞吐变化。100.png
  3. 在不同并发下,不同Values值数量下测试,关闭IN查询动态裁剪能力下,查看RT变化。111.png
  4. 在不同并发下,不同Values值数量下测试,关闭IN查询动态裁剪能力下,查看吞吐变化。112.png
  5. 通过测试对比,可以得到以下结论:
  • 兼顾RT和吞吐时,建议IN的值的数量在8~32之间,基本对齐分布式Parallel Query的默认并发度(单节点的CPU内核数)。
  • 在内核版本5.4.8-16069335(包含)之后,在开启IN查询的动态裁剪能力下,吞吐和RT都有明显的优势,推荐您将内核版本升级至5.4.8及以上版本。
相关文章
|
7天前
|
数据采集 人工智能 安全
|
16天前
|
云安全 监控 安全
|
2天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
269 156
|
3天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
208 105
|
10天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
739 5
|
13天前
|
人工智能 自然语言处理 API
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
822 153