Description:
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input:
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output:
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input:
3 2
10 3
341 2
341 3
1105 2
1105 3
0 0
Sample Output:
no
no
yes
no
yes
yes
解题思路:
这个题要求求出若p不是素数并且p^a是否等于a,若等于则输出yes,否则输出no。
这个题主要用到快速幂,其他就比较简单了,注意类型一定要是long long!!!(因为结果非常大)
程序代码:
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h> long long prime(long long x) { for(int i=2;i<=sqrt(x);i++) if(x%i==0) return 0; return 1; } long long quickmul(long long a,long long b) { long long ans=1; long long m=b; while(m) { if(m&1)//等价于m%2==1 ans=(ans*a)%b; a=(a*a)%b; m>>=1;//等价于m=m/2 } return ans; } int main() { long long p,a; while(scanf("%lld %lld",&p,&a)&&(p+a)) { if(prime(p)) printf("no\n"); else if(quickmul(a,p)==a) printf("yes\n"); else printf("no\n"); } return 0; }