【密码学】一文读懂白盒AES(Chow方案)(一)

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: 本文主要参考了文献^[1], 代码参考了^[2], 这里感谢文献作者和代码作者,如果有能力的大佬,可以自行查看原文献,个人水平有限,有哪里写的不对的地方,也欢迎读者指正。

密码学-白盒AES


$5GW6Z53Y`S5RGM0)3WCO(Q.jpg白盒AES

本文主要参考了文献^[1], 代码参考了^[2], 这里感谢文献作者和代码作者,如果有能力的大佬,可以自行查看原文献,个人水平有限,有哪里写的不对的地方,也欢迎读者指正。


AES概述

在这里,先来简单回顾一下AES具体的加密过程,在AES当中,主要有4个基本的变换

  • 「轮密钥加(AddRoundKey)」: 将状态和16-byte轮密钥进行异或运算
  • **字节替代(SubBytes)**A: 采用一个置换表S-box, 将状态当中的每个字节映射到置换表对应的元素。
  • 「行移位(ShiftRows)」: 对字节进行重排列, 具体的矩阵就不贴出来了。
  • 「列混淆(MixColumns)」: 一次更新状态当中的4个字节,实际上是左乘一个在GF(256)上面的一个可逆矩阵。

对于密钥扩展算法在本文当中不是重点,因此不具体描述了。

整个AES的加密过程如下:

image.png

这里只是对AES进行一个简单的回顾,如果不熟悉的读者可以自行查阅相关资料,或者看一下我之前写的对于AES的文章。


基于查表法实现AES

为了实现白盒AES的目标,需要对原始AES的流程进行"亿点点"变换,下面来看一下另外的一种AES实现的方法。

调整轮函数结构

观察AES加密流程,可以发现,如果把 「轮密钥加(AddRoundKey)」 放到循环内部,实际上整个算法结构是不变的,如下所示:

image.png

交换字节替代和行移位

来形象的看一下,字节替代和行移位的过程:

ZLAC(JHH$PNXCR3(}L4P%}G.png

交换字节替代和行移位

通过上图可以发现,最终结果交换上面两部分是没关系的,修改之后的流程如下:

image.png

不信的读者,可以自行编写一下代码试试,这一步比较好理解,我就不单独写代码验证一下了。

交换轮密钥加和行移位

然后考虑到行移位是线性的,因此可以对轮密钥做同样的置换运算,然后交换行移位和轮密钥加进行一个交换,这里的原理和上面的类似,主要是因为轮密钥加并不改变位置,行移位不改变值,稍微注意的一点是,这里轮密钥加的密钥要同样做一次行移位,和原始的对应起来,具体流程如下:

image.png

做到这一步处理,就可以来看如何构造查表了,下面介绍一下需要用到的表。

T-boxes

首先观察一下 「轮密钥加」「字节替代」,可以构造一个函数,对应输入的任意一个状态,得到特定的输出。

image.png

注意到,对于x的取值实际上是0..255, 因此可以枚举这个函数的值域,由此得到 「T-boxes」

fn calculate_t_boxes(round_key: &[u32; 44]) -> [[[u8; 256]; 16]; 10] {
    let mut t_boxes = [[[0u8; 256]; 16]; 10];
    for r in 0..10 {
        for x in 0..256 {
            let mut state = [x as u8; 16];
            add_round_key_after_shift(&mut state, &round_key[r * 4..(r * 4 + 4)].try_into().expect(""));
            sub_bytes(&mut state);
            if r == 9 {
                add_round_key(&mut state, round_key[40..44].try_into().expect(""))
            }
            for i in 0..16 {
                t_boxes[r][i][x] = state[i];
            }
        }
    }
    return t_boxes;
}

对于 「T-boxes」 总共有160个,每个表是256个字节。

Ty-tables

下面来看一下列混淆的过程,注意到GF(256)上面的加法运算实际上是异或运算,不理解的可以参考我之前写过有关有限域介绍的文章,这里不展开了。

image.png

从上面,同理可以找到一个函数:

image.png

这里,其中是对应矩阵前面的系数,这块和文章里面不太一致,这块我看原始的文章也有点迷,通过代码结合文章,我感觉是这样的,如果这块我理解的有错误的地方,还请读者和我讨论。

fn calculate_ty() -> [[[u8; 4]; 256]; 4] {
    let mut ty = [[[0u8; 4]; 256]; 4];
    for x in 0..=255 {
        ty[0][x][0] = gmul(x as u8, 2);
        ty[0][x][1] = gmul(x as u8, 3);
        ty[0][x][2] = x as u8;
        ty[0][x][3] = x as u8;
        ty[1][x][0] = x as u8;
        ty[1][x][1] = gmul(x as u8, 2);
        ty[1][x][2] = gmul(x as u8, 3);
        ty[1][x][3] = x as u8;
        ty[2][x][0] = x as u8;
        ty[2][x][1] = x as u8;
        ty[2][x][2] = gmul(x as u8, 2);
        ty[2][x][3] = gmul(x as u8, 3);
        ty[3][x][0] = gmul(x as u8, 3);
        ty[3][x][1] = x as u8;
        ty[3][x][2] = x as u8;
        ty[3][x][3] = gmul(x as u8, 2);
    }
    ty
}

这个可以结合查表的最主要的原因还是因为x的范围比较小,只有0..255, 因此可以枚举,原始代码计算乘法用的查表,我直接复制了一个我之前写好的有限域乘法的函数,如果看原始代码注意一下这一点。

XOR tables

这个表比较简单,实际上是对于每轮当中的两个半字节进行一个查表的异或运算,同样可以定义一个函数:

image.png

fn calculate_xor_table() -> [[[[u8; 16]; 16]; 96]; 9] {
    let mut xor_table = [[[[0u8; 16]; 16]; 96]; 9];
    for r in 0..9 {
        for n in 0..96 {
            for i in 0..16 {
                for j in 0..16 {
                    xor_table[r][n][i][j] = (i ^ j) as u8;
                }
            }
        }
    }
    xor_table
}

不过这个表的作用我没发现,我感觉如果去掉这个表问题好像也不大,也有可能我哪里理解错了,这里直接用异或操作不就可以了,有点迷,后文实现还是沿用有xor table的方案。

表的合并

可以发现,「T-Boxes」「Tyi-tables」是可以合并到一起的,如下所示:

image.png

代码如下所示:

fn calculate_ty_boxes(round_key: &[u32; 44]) -> ([[[u32; 256]; 16]; 9], [[u8; 256]; 16]) {
    let t_boxes = calculate_t_boxes(&round_key);
    let ty: [[[u8; 4]; 256]; 4] = calculate_ty();
    let mut ty_boxes = [[[0u32; 256]; 16]; 9];
    let mut last_t_boxes = [[0u8; 256]; 16];
    for r in 0..9 {
        for x in 0..256 {
            for j in 0..4 {
                for i in 0..4 {
                    let v0 = ty[0][t_boxes[r][j * 4 + i][x] as usize][i] as u32;
                    let v1 = ty[1][t_boxes[r][j * 4 + i][x] as usize][i] as u32;
                    let v2 = ty[2][t_boxes[r][j * 4 + i][x] as usize][i] as u32;
                    let v3 = ty[3][t_boxes[r][j * 4 + i][x] as usize][i] as u32;
                    ty_boxes[r][j * 4 + i][x] = (v0.wrapping_shl(24) | (v1.wrapping_shl(16)) | v2.wrapping_shl(8) | v3) as u32;
                }
            }
        }
    }
    for x in 0..256 {
        for i in 0..16 {
            last_t_boxes[i][x] = t_boxes[9][i][x];
        }
    }
    (ty_boxes, last_t_boxes)
}

这里实际上是以32位存储的y值。


总结


通过上面的描述,我们可以发现,对于整个AES的计算过程可以通过三个表来查表实现

  • 「TboxesTyiTables」
  • 「XORTables」
  • 「TBoxes」

详细过程如下:

image.gifAES-查表法

查表法实现AES完整代码如下:

use std::convert::TryInto;
// region 标准aes实现
static SBOX: [[u8; 16]; 16] = [
    [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76],
    [0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0],
    [0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15],
    [0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75],
    [0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84],
    [0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf],
    [0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8],
    [0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2],
    [0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73],
    [0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb],
    [0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79],
    [0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08],
    [0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a],
    [0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e],
    [0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf],
    [0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16],
];
fn gmul(ap: u8, bp: u8) -> u8 {
    let mut p = 0u8;
    let mut a = ap;
    let mut b = bp;
    while a != 0 && b != 0 {
        if b & 1 != 0 {
            p ^= a;
        }
        if a & 0x80 != 0 {
            // XOR with the primitive polynomial x^8 + x^4 + x^3 + x + 1 (0b1_0001_1011) – you can change it but it must be irreducible
            a = (((a << 1) as u16) ^ 0x11b) as u8;
        } else {
            a = a << 1;
        }
        b >>= 1;
    }
    return p & 0xFF;
}
fn add_round_key(state: &mut [u8; 16], key: &[u32; 4]) {
    for i in 0..4 {
        for j in 0..4 {
            state[i * 4 + j] ^= (key[i] >> ((3 - j) * 8)) as u8;
        }
    }
}
fn add_round_key_after_shift(state: &mut [u8; 16], key: &[u32; 4]) {
    for i in 0..4 {
        for j in 0..4 {
            state[i * 4 + j] ^= (key[(j + i) % 4] >> ((3 - j) * 8)) as u8;
        }
    }
}
fn sub_bytes(state: &mut [u8; 16]) {
    for i in 0..4 {
        for j in 0..4 {
            state[i * 4 + j] = SBOX[(state[i * 4 + j] >> 4) as usize][(state[i * 4 + j] & 0x0F) as usize];
        }
    }
}
fn shift_rows(state: &mut [u8; 16]) {
    let shifts = [
        0, 5, 10, 15,
        4, 9, 14, 3,
        8, 13, 2, 7,
        12, 1, 6, 11,
    ];
    let in_state = [
        state[0], state[1], state[2], state[3],
        state[4], state[5], state[6], state[7],
        state[8], state[9], state[10], state[11],
        state[12], state[13], state[14], state[15],
    ];
    for i in 0..16 {
        state[i] = in_state[shifts[i]];
    }
}
fn mix_columns(state: &mut [u8; 16]) {
    for i in 0..4 {
        let (a, b, c, d) = (state[4 * i + 0], state[4 * i + 1], state[4 * i + 2], state[4 * i + 3]);
        state[0 + 4 * i] = gmul(a, 2) ^ gmul(d, 1) ^ gmul(c, 1) ^ gmul(b, 3);
        state[1 + 4 * i] = gmul(b, 2) ^ gmul(a, 1) ^ gmul(d, 1) ^ gmul(c, 3);
        state[2 + 4 * i] = gmul(c, 2) ^ gmul(b, 1) ^ gmul(a, 1) ^ gmul(d, 3);
        state[3 + 4 * i] = gmul(d, 2) ^ gmul(c, 1) ^ gmul(b, 1) ^ gmul(a, 3);
    }
}
fn sub_word(word: u32) -> u32 {
    let mut result = 0u32;
    for i in 0..4 {
        let upper_nibble = ((word >> (4 + 8 * i)) & 0xF) as usize;
        let lower_nibble = ((word >> (8 * i)) & 0xF) as usize;
        result += (SBOX[upper_nibble][lower_nibble] as u32) << (8 * i);
    }
    return result;
}
fn rot_word(x: u32) -> u32 {
    (x << 8) | (x >> 24)
}
fn expend_keys(key: &[u8; 16], nk: u32, nr: u32) -> [u32; 44] {
    let nb = 4;
    let r_con: [u32; 15] = [
        0x01000000, 0x02000000, 0x04000000,
        0x08000000, 0x10000000, 0x20000000,
        0x40000000, 0x80000000, 0x1b000000,
        0x36000000, 0x6c000000, 0xd8000000,
        0xab000000, 0x4d000000, 0x9a000000,
    ];
    let mut w = [0u32; 44];
    for i in 0..4 {
        w[i] = ((((key[4 * i + 0]) as u32) << 24)
            | ((key[4 * i + 1] as u32) << 16)
            | ((key[4 * i + 2] as u32) << 8)
            | ((key[4 * i + 3] as u32) << 0)) as u32;
    }
    for i in nk..(nb * (nr + 1)) {
        let mut temp = w[(i - 1) as usize];
        if i % nk == 0 {
            temp = sub_word(rot_word(temp)) ^ r_con[((i - 1) / nk) as usize];
        } else if nk > 6 && (i % nk) == 4 {
            temp = sub_word(temp);
        }
        w[i as usize] = w[(i - nk) as usize] ^ temp;
    }
    w
}
fn encrypt_block(bytes: &[u8; 16], round_key: &[u32; 44]) -> [u8; 16] {
    let mut result = [0u8; 16];
    let mut state = [
        bytes[0], bytes[1], bytes[2], bytes[3],
        bytes[4], bytes[5], bytes[6], bytes[7],
        bytes[8], bytes[9], bytes[10], bytes[11],
        bytes[12], bytes[13], bytes[14], bytes[15],
    ];
    add_round_key(&mut state, round_key[0..4].try_into().expect(""));
    for i in 1..10 {
        sub_bytes(&mut state);
        shift_rows(&mut state);
        mix_columns(&mut state);
        add_round_key(&mut state, round_key[i * 4..(i + 1) * 4].try_into().expect(""));
    }
    sub_bytes(&mut state);
    shift_rows(&mut state);
    add_round_key(&mut state, round_key[40..44].try_into().expect(""));
    for i in 0..16 {
        result[i] = state[i];
    }
    result
}
// endregion
fn calculate_t_boxes(round_key: &[u32; 44]) -> [[[u8; 256]; 16]; 10] {
    let mut t_boxes = [[[0u8; 256]; 16]; 10];
    for r in 0..10 {
        for x in 0..256 {
            let mut state = [x as u8; 16];
            add_round_key_after_shift(&mut state, &round_key[r * 4..(r * 4 + 4)].try_into().expect(""));
            sub_bytes(&mut state);
            if r == 9 {
                add_round_key(&mut state, round_key[40..44].try_into().expect(""))
            }
            for i in 0..16 {
                t_boxes[r][i][x] = state[i];
            }
        }
    }
    return t_boxes;
}
fn calculate_ty() -> [[[u8; 4]; 256]; 4] {
    let mut ty = [[[0u8; 4]; 256]; 4];
    for x in 0..=255 {
        ty[0][x][0] = gmul(x as u8, 2);
        ty[0][x][1] = gmul(x as u8, 3);
        ty[0][x][2] = x as u8;
        ty[0][x][3] = x as u8;
        ty[1][x][0] = x as u8;
        ty[1][x][1] = gmul(x as u8, 2);
        ty[1][x][2] = gmul(x as u8, 3);
        ty[1][x][3] = x as u8;
        ty[2][x][0] = x as u8;
        ty[2][x][1] = x as u8;
        ty[2][x][2] = gmul(x as u8, 2);
        ty[2][x][3] = gmul(x as u8, 3);
        ty[3][x][0] = gmul(x as u8, 3);
        ty[3][x][1] = x as u8;
        ty[3][x][2] = x as u8;
        ty[3][x][3] = gmul(x as u8, 2);
    }
    ty
}
fn calculate_ty_boxes(round_key: &[u32; 44]) -> ([[[u32; 256]; 16]; 10], [[u8; 256]; 16]) {
    let t_boxes = calculate_t_boxes(&round_key);
    let ty: [[[u8; 4]; 256]; 4] = calculate_ty();
    let mut ty_boxes = [[[0u32; 256]; 16]; 10];
    let mut last_t_boxes = [[0u8; 256]; 16];
    for r in 0..9 {
        for x in 0..256 {
            for j in 0..4 {
                for i in 0..4 {
                    let v0 = ty[0][t_boxes[r][j * 4 + i][x] as usize][i] as u32;
                    let v1 = ty[1][t_boxes[r][j * 4 + i][x] as usize][i] as u32;
                    let v2 = ty[2][t_boxes[r][j * 4 + i][x] as usize][i] as u32;
                    let v3 = ty[3][t_boxes[r][j * 4 + i][x] as usize][i] as u32;
                    ty_boxes[r][j * 4 + i][x] = (v0.wrapping_shl(24) | (v1.wrapping_shl(16)) | v2.wrapping_shl(8) | v3) as u32;
                }
            }
        }
    }
    for x in 0..256 {
        for i in 0..16 {
            last_t_boxes[i][x] = t_boxes[9][i][x];
        }
    }
    // println!("ty_boxes{:x?}", ty_boxes);
    (ty_boxes, last_t_boxes)
}
fn calculate_xor_table() -> [[[[u8; 16]; 16]; 96]; 9] {
    let mut xor_table = [[[[0u8; 16]; 16]; 96]; 9];
    for r in 0..9 {
        for n in 0..96 {
            for i in 0..16 {
                for j in 0..16 {
                    xor_table[r][n][i][j] = (i ^ j) as u8;
                }
            }
        }
    }
    xor_table
}
fn encrypt_block_by_table(bytes: &[u8; 16], round_key: &[u32; 44]) -> [u8; 16] {
    let mut result = [0u8; 16];
    let (ty_boxes, last_t_boxes) = calculate_ty_boxes(round_key);
    let xor_table = calculate_xor_table();
    let mut input = bytes.clone();
    for r in 0..9 {
        shift_rows(&mut input);
        for j in 0..4 {
            let aa = ty_boxes[r][j * 4 + 0][input[j * 4 + 0] as usize] as usize;
            let bb = ty_boxes[r][j * 4 + 1][input[j * 4 + 1] as usize] as usize;
            let cc = ty_boxes[r][j * 4 + 2][input[j * 4 + 2] as usize] as usize;
            let dd = ty_boxes[r][j * 4 + 3][input[j * 4 + 3] as usize] as usize;
            let n0 = xor_table[r][j * 24 + 0][(aa >> 28) & 0xf][(bb >> 28) & 0xf] as usize;
            let n1 = xor_table[r][j * 24 + 1][(cc >> 28) & 0xf][(dd >> 28) & 0xf] as usize;
            let n2 = xor_table[r][j * 24 + 2][(aa >> 24) & 0xf][(bb >> 24) & 0xf] as usize;
            let n3 = xor_table[r][j * 24 + 3][(cc >> 24) & 0xf][(dd >> 24) & 0xf] as usize;
            input[j * 4 + 0] = (xor_table[r][j * 24 + 4][n0][n1] << 4) | xor_table[r][j * 24 + 5][n2][n3];
            let n0 = xor_table[r][j * 24 + 6][(aa >> 20) & 0xf][(bb >> 20) & 0xf] as usize;
            let n1 = xor_table[r][j * 24 + 7][(cc >> 20) & 0xf][(dd >> 20) & 0xf] as usize;
            let n2 = xor_table[r][j * 24 + 8][(aa >> 16) & 0xf][(bb >> 16) & 0xf] as usize;
            let n3 = xor_table[r][j * 24 + 9][(cc >> 16) & 0xf][(dd >> 16) & 0xf] as usize;
            input[j * 4 + 1] = (xor_table[r][j * 24 + 10][n0][n1] << 4) | xor_table[r][j * 24 + 11][n2][n3];
            let n0 = xor_table[r][j * 24 + 12][(aa >> 12) & 0xf][(bb >> 12) & 0xf] as usize;
            let n1 = xor_table[r][j * 24 + 13][(cc >> 12) & 0xf][(dd >> 12) & 0xf] as usize;
            let n2 = xor_table[r][j * 24 + 14][(aa >> 8) & 0xf][(bb >> 8) & 0xf] as usize;
            let n3 = xor_table[r][j * 24 + 15][(cc >> 8) & 0xf][(dd >> 8) & 0xf] as usize;
            input[j * 4 + 2] = (xor_table[r][j * 24 + 16][n0][n1] << 4) | xor_table[r][j * 24 + 17][n2][n3];
            let n0 = xor_table[r][j * 24 + 18][(aa >> 4) & 0xf][(bb >> 4) & 0xf] as usize;
            let n1 = xor_table[r][j * 24 + 19][(cc >> 4) & 0xf][(dd >> 4) & 0xf] as usize;
            let n2 = xor_table[r][j * 24 + 20][(aa >> 0) & 0xf][(bb >> 0) & 0xf] as usize;
            let n3 = xor_table[r][j * 24 + 21][(cc >> 0) & 0xf][(dd >> 0) & 0xf] as usize;
            input[j * 4 + 3] = (xor_table[r][j * 24 + 22][n0][n1] << 4) | xor_table[r][j * 24 + 23][n2][n3];
        }
    }
    shift_rows(&mut input);
    for i in 0..16 {
        result[i] = last_t_boxes[i][input[i] as usize];
    }
    result
}
#[cfg(test)]
mod test {
    use crate::wbaes::{expend_keys, encrypt_block, encrypt_block_by_table};
    #[test]
    fn test_expand_key() {
        let key = [43, 126, 21, 22, 40, 174, 210, 166, 171, 247, 21, 136, 9, 207, 79, 60];
        println!("{:x?}", key);
        let input = [50, 67, 246, 168, 136, 90, 48, 141, 49, 49, 152, 162, 224, 55, 7, 52];
        // let input = [65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65];
        let w = expend_keys(&key, 4, 10);
        println!("{:?}", w);
        let block = encrypt_block(&input, &w);
        println!("{:x?}", block);
        let block_table = encrypt_block_by_table(&input, &w);
        println!("{:x?}", block_table);
    }
}

这段代码只是实现了加密,因为解密的话,这里需要修改表的生成,本文就不在这里介绍了。

相关文章
|
存储 Rust 并行计算
【密码学】一文读懂XTS模式
这篇文章的灵感来源于我偶然翻到的一个某U盘有关磁盘加密的一个介绍(这一篇不是广告蛤), 然后发现这个模式我之前还真没遇到过,因此呢,就学习了一下,就出来了这一篇文章。
5109 0
【密码学】一文读懂XTS模式
【密码学】一文读懂SHAMIR门限方案
【密码学】一文读懂SHAMIR门限方案
1370 0
【密码学】一文读懂SHAMIR门限方案
|
Rust 算法 数据安全/隐私保护
【密码学】一文读懂XTEA加密
本篇文章,我们来看一下上一次讲过的TEA加密算法的一个升级版XTEA, 相比于TEA, XTEA的安全性显然是更高的,其中的过程要比TEA稍微复杂一点点。
1265 0
【密码学】一文读懂XTEA加密
|
2月前
|
存储 安全 数据库
双重防护,无懈可击!Python AES+RSA加密方案,构建最强数据安全堡垒
【9月更文挑战第11天】在数字时代,数据安全至关重要。AES与RSA加密技术相结合,构成了一道坚固防线。AES以其高效性保障数据加密,而RSA则确保密钥安全传输,二者相辅相成,提供双重保护。本文通过Python代码示例展示了这一加密方案的魅力,强调了其在实际应用中的重要性和安全性。使用HTTPS等安全协议传输加密密钥和密文,确保数据在数字世界中自由流通而无忧。
60 1
|
4月前
|
搜索推荐 安全 网络安全
AES 加密解密技术原理模式和实践
AES (Advanced Encryption Standard), aka Rijndael, is a symmetric encryption algorithm offering high security and speed over DES.
|
6月前
|
存储 算法 安全
软件体系结构 - 对称加密算法
软件体系结构 - 对称加密算法
40 0
|
6月前
|
安全 算法 网络安全
软件体系结构 - 非对称加密算法
软件体系结构 - 非对称加密算法
57 0
|
Rust 算法 数据安全/隐私保护
【密码学】一文读懂白盒AES(Chow方案)(二)
本文主要参考了文献^[1], 代码参考了^[2], 这里感谢文献作者和代码作者,如果有能力的大佬,可以自行查看原文献,个人水平有限,有哪里写的不对的地方,也欢迎读者指正。
1568 0
【密码学】一文读懂白盒AES(Chow方案)(二)
|
算法 安全 Java
常用密码学算法及其工程实践
在工程实践中,加解密算法、单向散列函数、消息认证码、数字签名等密码学内容经常出现。由于我之前对密码学一知半解,经常有摸不着头脑的情况。 比如我遇到过以下两种情况,我相信很多对密码学不熟悉的同学可能也有跟我一样的疑惑: 情况一,同样的明文,同样的密钥,每次加密生成的密文居然不一样?不一样的密文为什么能解密为同样的明文?我在开发友盟+数擎一体机时,在加密数据库中发现了这样的情况,当时非常不理解。
625 0
常用密码学算法及其工程实践
|
定位技术
【密码学】一文读懂零知识证明
本文来聊一聊零知识证明的一点知识, 本文的例子纯属虚构,故事素材来源于网络和论文,以及我的瞎编, 如有雷同, 纯属巧合。
【密码学】一文读懂零知识证明