运动会-组合数学

简介: 题目描述在一次运会上,有一个比赛项目,共有N个人参加比赛,要将这N个人分组,每组人数不少于K个,问有多少种分组方式?比如有16个运动员,每组人数不少于5个,共有6种分组方式:(1) 分一组,为16人;(2) 分二组,分别为11人、5人;(3) 分二组,分别为10人、6人;(4) 分二组,分别为9人、7人;(5) 分二组,分别为8人、8人;(6) 分三组,分别为6人、5人、5人。注意:6+5+5,5+6+5,5+5+6为同一种,只算一种分组方式;输入输入共一行为两个整数N, K。表示有N个运动员分组,每组不少于K个人(1 ≤ K ≤ N ≤ 500)。

题目描述


在一次运会上,有一个比赛项目,共有N个人参加比赛,要将这N个人分组,每组人数不少于K个,问有多少种分组方式?

比如有16个运动员,每组人数不少于5个,共有6种分组方式:

(1) 分一组,为16人;

(2) 分二组,分别为11人、5人;

(3) 分二组,分别为10人、6人;

(4) 分二组,分别为9人、7人;

(5) 分二组,分别为8人、8人;

(6) 分三组,分别为6人、5人、5人。

注意:6+5+5,5+6+5,5+5+6为同一种,只算一种分组方式;


输入


输入共一行为两个整数N, K。表示有N个运动员分组,每组不少于K个人(1 ≤ K ≤ N ≤ 500)。


输出


输出共一行为一个整数,表示分组数。


样例输入 Copy


16 5


样例输出 Copy


6

这是一道比较经典的 组合数学 题,像极了高中时代求n球放在m个盒子里的方案数量


题意转化:

n个人分组,每组至少k人,那么说我们一定能够得到最多能分 t = n / k 组, 下取整

然后将n个人分组,每组至少k人的方案数 就等于 n人分1组 + 分2组 + … + 分 t 组的方案数量

将n人分 i 组(1 <= i <= t) 的方案数量:{

每组先安排k个人,然后会剩下rest = n - k * i

然后问题就转化为将剩下的rest人分到i组里面,允许有空的方案数啦(是不是很熟悉)

}

记得开 __int128,否则会wa


Code:


__int128 n,k,t;
__int128 dp[507][507];
void getdp(){
  for(int i=0;i<=n;i++){
    for(int j=0;j<=t;j++){
      if(i == 0 || i == 1 || j == 1) dp[i][j] = 1;
    }
  }
  for(int i=2;i<=n;i++){
    for(int j=1;j<=t;j++){
      if(i < j) dp[i][j] = dp[i][j-1];
      else dp[i][j] = dp[i][j-1] + dp[i-j][j];
    }
  }
}
int main()
{
  n = Read(),k = Read();
  t = n / k;///最多t组
  __int128 ans = 0;
  getdp();
  for(__int128 i=1;i<=t;i++){
    __int128 rest = n - k * i;
    if(rest == 0) {
      ans ++;
      continue;
    }
    ans += dp[rest][i];
//    write(ans);
//    puts("");
  }
  write(ans);
    return 0;
}


当然,也可以记忆化搜索一手:


Code:


__int128 vis[507][507];
__int128 get(__int128 n,__int128 m){
  if(vis[n][m]) return vis[n][m];
  if(n == 1 || m == 1 || n == 0) return vis[n][m] = 1LL;
  if(n < m) return vis[n][m] = get(n,m-1);
  if(n >= m && m > 1) return vis[n][m] = get(n,m-1) + get(n-m,m);
}
int main()
{
  __int128 n = Read(),k = Read();
  __int128 t = n / k;
  __int128 ans = 0;
  for(__int128 i=1;i<=t;i++){
    __int128 rest = n - k * i;
    if(rest == 0) {
      ans ++;
      continue;
    }
    ans += get(rest,i);
  }
  write(ans);
    return 0;
}




目录
相关文章
|
6月前
|
Java
微生物增殖(蓝桥杯)
微生物增殖(蓝桥杯)
|
测试技术
蓝桥杯2021年第十二届省赛真题-砝码称重(动态规划)
蓝桥杯2021年第十二届省赛真题-砝码称重(动态规划)
|
C++
蓝桥杯2020省赛真题 作物杂交问题 C++
蓝桥杯2020省赛真题 作物杂交问题 C++
160 1
蓝桥杯2020省赛真题 作物杂交问题 C++
|
存储 机器学习/深度学习 算法
蓝桥杯十大常见天阶功法——虫之呼吸.贰之型.二分
蓝桥杯十大常见天阶功法——虫之呼吸.贰之型.二分
277 0
蓝桥杯十大常见天阶功法——虫之呼吸.贰之型.二分
|
机器学习/深度学习 人工智能
把所有的谎言献给你β(找规律数学题)
梓川咲太的面前坐着野兔先辈,作为约定,只好乖乖的打开笔记本开始学习了。 “加法符号写歪了,变成了乘法符号,在算式的第三行那个地方。”樱岛麻衣突然开口。
165 0
把所有的谎言献给你β(找规律数学题)
蓝桥杯 砝码称重
蓝桥杯 砝码称重
61 0
|
机器学习/深度学习
进击的奶牛(二分)
题目描述 Farmer John 建造了一个有 NN(2≤ N ≤ 100000) 个隔间的牛棚,这些隔间分布在一条直线上,坐标是 x1,,,,xn(0≤xi≤1000000000)。
187 0
|
算法
算法:奶牛慢跑
题目: 奶牛们又出去锻炼蹄子去了! 有 N 头奶牛在无限长的单行道上慢跑。 每头奶牛在跑道上开始奔跑的位置都不相同,一些奶牛的奔跑速度也可能不同。
111 0
1275: [蓝桥杯2015决赛]五星填数
五星图案节点填上数字:1~12,除去7和11。要求每条直线上数字和相等。
1275: [蓝桥杯2015决赛]五星填数
【智力题】数字游戏2
有16枚硬币。双方轮流从中取走1枚、2枚或者4枚硬币,谁取最后一枚硬币就算输。请分析游戏的策略。可以将游戏转化为:轮流说出数字1或2或4并累加,先加到16的人输。从后往前推:我——>15他——>14\13\11我——>12他——>11\10\8我——>9他——>8\7\5我——>6他——>5\4\2我——>3可以找出一些规律。
1134 0