《Android 源码设计模式解析与实战》——第1章,第1.6节更好的可扩展性——迪米特原则

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介:

本节书摘来自异步社区《Android 源码设计模式解析与实战》一书中的第1章,第1.6节更好的可扩展性——迪米特原则,作者 何红辉 , 关爱民,更多章节内容可以访问云栖社区“异步社区”公众号查看

1.6 更好的可扩展性——迪米特原则
迪米特原则英文全称为Law of Demeter,缩写是LOD,也称为最少知识原则(Least Knowledge Principle)。虽然名字不同,但描述的是同一个原则:一个对象应该对其他对象有最少的了解。通俗地讲,一个类应该对自己需要耦合或调用的类知道得最少,类的内部如何实现与调用者或者依赖者没关系,调用者或者依赖者只需要知道它需要的方法即可,其他的可一概不用管。类与类之间的关系越密切,耦合度越大,当一个类发生改变时,对另一个类的影响也越大。

迪米特法则还有一个英文解释是Only talk to your immedate friends,翻译过来就是:只与直接的朋友通信。什么叫做直接的朋友呢?每个对象都必然会与其他对象有耦合关系,两个对象之间的耦合就成为朋友关系,这种关系的类型有很多,如组合、聚合、依赖等。

下面我们就以租房为例来讲讲迪米特原则的应用。

“北漂”的朋友比较了解,在北京租房绝大多数都是通过中介找房。我们设定的情况为:我只要求房间的面积和租金,其他的一概不管,中介将符合我要求的房子提供给我就可以。下面我们看看这个示例:

/**
 * 房间
 */
public  class  Room {
    public  float  area;
    public  float  price;
    public Room(float  area, float  price) {
        this.area = area;
        this.price = price;
    }
    @Override
    public  String toString() {
        return "Room [area=" + area + ", price=" + price + "]";
    }

}

/**
 * 中介
 */
public  class  Mediator {
    List<Room> mRooms = new ArrayList<Room>();
    public  Mediator() {
        for (inti = 0; i < 5; i++) {
            mRooms.add(new Room(14 + i, (14 + i) * 150));
        }
    }
    public   List<Room>getAllRooms() {
        return  mRooms;
    }

}

/**
 * 租户
 */
public  class  Tenant {
    public float  roomArea;
    public float  roomPrice;
    public  static final float diffPrice = 100.0001f;
    public  static final float diffArea = 0.00001f;
    public  void rentRoom(Mediator mediator) {
        List<Room>rooms = mediator.getAllRooms();
        for (Room room : rooms) {
            if (isSuitable(room)) {
              System.out.println("租到房间啦! " + room);
                break;
            }
        }
    }

    private boolean isSuitable(Room room) {
        return  Math.abs(room.price - roomPrice) < diffPrice
                &&Math.abs(room.area - roomArea) < diffArea;
    }
}

从上面的代码中可以看到,Tenant不仅依赖了Mediator类,还需要频繁地与Room类打交道。租户类的要求只是通过中介找到一间适合自己的房间罢了,如果把这些检测条件都放在Tenant类中,那么中介类的功能就被弱化,而且导致Tenant与Room的耦合较高,因为Tenant必须知道许多关于Room的细节。当Room变化时Tenant也必须跟着变化。Tenant又与Mediator耦合,这就出现了纠缠不清的关系。这个时候就需要我们分清谁才是我们真正的“朋友”,在我们所设定的情况下,显然是Mediator(虽然现实生活中不是这样的)。上述代码的结构如图1-5所示。


bfa1e2157c78f92f0e148dcfdb9ab5b5d128e63f

既然是耦合太严重,那我们就只能解耦了。首先要明确的是,我们只和我们的朋友通信,这里就是指Mediator对象。必须将Room相关的操作从Tenant中移除,而这些操作案例应该属于Mediator。我们进行如下重构:

/**
 * 中介
 */
public  class  Mediator {
    List<Room> mRooms = new ArrayList<Room>();
    public  Mediator() {
         for (inti = 0; i < 5; i++) {
            mRooms.add(new Room(14 + i, (14 + i) * 150));
        }
    }

    public   Room rentOut(float  area, float  price) {
         for (Room room : mRooms) {
            if (isSuitable(area, price, room)) {
                return  room;
           }
       }

        return null;
    }

    private boolean isSuitable(float  area, float  price, Room room) {
        return  Math.abs(room.price - price) < Tenant.diffPrice
            && Math.abs(room.area - area) < Tenant.diffPrice;
    }
}

/**
 * 租户
 */
public  class  Tenant {
    public  float  roomArea;
    public  float  roomPrice;
    public  static final float diffPrice = 100.0001f;
    public  static final float diffArea = 0.00001f;

    public  void rentRoom(Mediator mediator) {
        System.out.println("租到房啦 " + mediator.rentOut(roomArea, roomPrice));
     }
}

重构后的结构图如图1-6所示。


1818d4b5ac87a9c88c9d00f82cddc494927356f9

只是将对于Room的判定操作移到了Mediator类中,这本应该是Mediator的职责,根据租户设定的条件查找符合要求的房子,并且将结果交给租户就可以了。租户并不需要知道太多关于Room的细节,比如与房东签合同,房东的房产证是不是真的,房内的设施坏了之后要找谁维修等。当我们通过我们的“朋友”——中介租了房之后,所有的事情我们都通过与中介沟通就好了,房东、维修师傅等这些角色并不是我们直接的“朋友”。“只与直接的朋友通信”这简单的几个字就能够将我们从复杂的关系网中抽离出来,使程序耦合度更低、稳定性更好。

通过上述示例以及小民的后续思考,迪米特原则这把利剑在小民的手中已经舞得风生水起。就拿SD卡缓存来说吧,ImageCache就是用户的直接朋友,而SD卡缓存内部却是使用了jake wharton的DiskLruCache实现,这个DiskLruCache就不属于用户的直接朋友了,因此,用户完全不需要知道它的存在,用户只需要与ImageCache对象打交道即可,如将图片存到SD卡中的代码如下:

public  void put(String url, Bitmap value) {
    DiskLruCache.Editor editor = null;
    try {
       // 如果没有找到对应的缓存,则准备从网络上请求数据,并写入缓存
        editor = mDiskLruCache.edit(url);
        if (editor != null) {
            OutputStream outputStream = editor.newOutputStream(0);
            if (writeBitmapToDisk(value, outputStream)) {
                // 写入Disk缓存
                editor.commit();
            } else {
                editor.abort();
            }
            CloseUtils.closeQuietly(outputStream);
        }
    } catch (IOException e) {
          e.printStackTrace();
    }
}

用户在使用SD卡缓存时,根本不知道DiskLruCache的实现,这就很好地对用户隐藏了具体实现。当小民已经“牛”到可以自己完成SD卡的LRU实现时,他就可以随心所欲地替换掉jake wharton的DiskLruCache。小民的代码大体如下:

@Override
public  void put(String url, Bitmap bmp) {
    // 将Bitmap写入文件中
    FileOutputStream fos = null;
    try {
       // 构建图片的存储路径 ( 省略了对url取md5)
        fos = new FileOutputStream("sdcard/cache/" + imageUrl2MD5(url));
        bmp.compress(CompressFormat.JPEG, 100, fos);
    } catch (FileNotFoundException e) {
        e.printStackTrace();
    } finally {
        if ( fos != null ) {
            try {
                fos.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    } // end if finally
}

SD卡缓存的具体实现虽然被替换了,但用户根本不会感知到。因为用户根本不知道DiskLruCache的存在,他们没有与DiskLruCache进行通信,他们只认识直接“朋友”——ImageCache,ImageCache将一切细节隐藏在了直接“朋友”的外衣之下,使得系统具有更低的耦合性和更好的可扩展性。

相关文章
|
1月前
|
Java 开发工具 Android开发
Android与iOS开发环境搭建全解析####
本文深入探讨了Android与iOS两大移动操作系统的开发环境搭建流程,旨在为初学者及有一定基础的开发者提供详尽指南。我们将从开发工具的选择、环境配置到第一个简单应用的创建,一步步引导读者步入移动应用开发的殿堂。无论你是Android Studio的新手还是Xcode的探索者,本文都将为你扫清开发道路上的障碍,助你快速上手并享受跨平台移动开发的乐趣。 ####
|
2天前
|
设计模式 XML Java
【23种设计模式·全精解析 | 自定义Spring框架篇】Spring核心源码分析+自定义Spring的IOC功能,依赖注入功能
本文详细介绍了Spring框架的核心功能,并通过手写自定义Spring框架的方式,深入理解了Spring的IOC(控制反转)和DI(依赖注入)功能,并且学会实际运用设计模式到真实开发中。
【23种设计模式·全精解析 | 自定义Spring框架篇】Spring核心源码分析+自定义Spring的IOC功能,依赖注入功能
|
2天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
2天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2天前
|
设计模式 Java 程序员
【23种设计模式·全精解析 | 概述篇】设计模式概述、UML图、软件设计原则
本系列文章聚焦于面向对象软件设计中的设计模式,旨在帮助开发人员掌握23种经典设计模式及其应用。内容分为三大部分:第一部分介绍设计模式的概念、UML图和软件设计原则;第二部分详细讲解创建型、结构型和行为型模式,并配以代码示例;第三部分通过自定义Spring的IOC功能综合案例,展示如何将常用设计模式应用于实际项目中。通过学习这些内容,读者可以提升编程能力,提高代码的可维护性和复用性。
【23种设计模式·全精解析 | 概述篇】设计模式概述、UML图、软件设计原则
|
24天前
|
存储 Linux API
深入探索Android系统架构:从内核到应用层的全面解析
本文旨在为读者提供一份详尽的Android系统架构分析,从底层的Linux内核到顶层的应用程序框架。我们将探讨Android系统的模块化设计、各层之间的交互机制以及它们如何共同协作以支持丰富多样的应用生态。通过本篇文章,开发者和爱好者可以更深入理解Android平台的工作原理,从而优化开发流程和提升应用性能。
|
1月前
|
设计模式 前端开发 JavaScript
JavaScript设计模式及其在实战中的应用,涵盖单例、工厂、观察者、装饰器和策略模式
本文深入探讨了JavaScript设计模式及其在实战中的应用,涵盖单例、工厂、观察者、装饰器和策略模式,结合电商网站案例,展示了设计模式如何提升代码的可维护性、扩展性和可读性,强调了其在前端开发中的重要性。
29 2
|
1月前
|
安全 Java Linux
深入解析Android系统架构及其对开发者的意义####
【10月更文挑战第21天】 本文旨在为读者揭开Android操作系统架构的神秘面纱,探讨其如何塑造现代移动应用开发格局。通过剖析Linux内核、硬件抽象层、运行时环境及应用程序框架等关键组件,揭示Android平台的强大功能与灵活性。文章强调了理解Android架构对于开发者优化应用性能、提升用户体验的重要性,并展望了未来技术趋势下Android的发展方向。 ####
47 0
|
2月前
|
设计模式 PHP 开发者
PHP中的设计模式:桥接模式的解析与应用
在软件开发的浩瀚海洋中,设计模式如同灯塔一般,为开发者们指引方向。本文将深入探讨PHP中的一种重要设计模式——桥接模式。桥接模式巧妙地将抽象与实现分离,通过封装一个抽象的接口,使得实现和抽象可以独立变化。本文将阐述桥接模式的定义、结构、优缺点及其应用场景,并通过具体的PHP示例代码展示如何在实际项目中灵活运用这一设计模式。让我们一起走进桥接模式的世界,感受它的魅力所在。

推荐镜像

更多