如何阅读JVM 源码

简介: 如何阅读JVM 源码

如何阅读JVM 源码



JDK中JVM(安装在本地C:\Program Files\Java\jdk1.8.0_121\jre\bin\server下jvm.dll)本身并不开源,只能找来openJDK来看(说是和JDK相似度很高)


openjdk
—— corba:不流行的多语言、分布式通讯接口
—— hotspot:Java 虚拟机
—— jaxp:XML 处理
—— jaxws:一组 XML web services 的 Java API
—— jdk:java 开发工具包
—— —— 针对操作系统的部分
—— —— share:与平台无关的实现
—— langtools:Java 语言工具
—— nashorn:JVM 上的 JavaScript 运行时

hotspot 代码结构


├─agent                            Serviceability Agent的实现
├─make                             用来build出HotSpot的各种配置文件
├─src                              HotSpot VM的源代码
│  ├─cpu                            CPU相关代码
│  ├─os                             操作系统相关代码
│  ├─os_cpu                         操作系统+CPU的组合相关的代码
│  └─share                          平台无关的共通代码
│      ├─tools                        工具
│      │  ├─hsdis                      反汇编插件
│      │  ├─IdealGraphVisualizer       将server编译器的中间代码可视化的工具
│      │  ├─launcher                   启动程序“java”
│      │  ├─LogCompilation             将-XX:+LogCompilation输出的日志(hotspot.log)整理成更容易阅读的格式的工具
│      │  └─ProjectCreator             生成Visual Studio的project文件的工具
│      └─vm                           HotSpot VM的核心代码
│          ├─adlc                       平台描述文件(上面的cpu或os_cpu里的*.ad文件)的编译器
│          ├─asm                        汇编器接口
│          ├─c1                         client编译器
│          ├─ci                         动态编译器的公共服务/接口
│          ├─classfile                  类文件的处理(包括类加载和系统符号表等)
│          ├─code                       动态生成的代码的管理
│          ├─compiler                   编译器接口
│          ├─gc_implementation          GC的实现
│          │  ├─concurrentMarkSweep      Concurrent Mark Sweep GC的实现
│          │  ├─g1                       Garbage-First GC的实现(不使用老的分代GC框架)
│          │  ├─parallelScavenge         ParallelScavenge GC的实现(server VM默认,不使用老的分代式GC框架)
│          │  ├─parNew                   ParNew GC的实现
│          │  └─shared                   GC的共同实现
│          ├─gc_interface               GC的接口
│          ├─interpreter                解释器,包括“模板解释器”(官方版在用)和“C++解释器”(官方版不在用)
│          ├─libadt                     一些抽象数据结构
│          ├─memory                     内存管理相关(老的分代GC框架也在这里)
│          ├─oops                       HotSpot VM的对象系统的实现
│          ├─opto                       server编译器
│          ├─prims                      HotSpot VM的对外接口,包括部分标准库的native部分和JVMTI实现
│          ├─runtime                    运行时支持库(包括线程管理、编译器调度、锁、反射等)
│          ├─services                   主要是用来支持JMX之类的管理功能的接口
│          ├─shark                      基于LLVM的JIT编译器(官方版里没有使用)
│          └─utilities                  一些基本的工具类
└─test                             单元测试

举个例子,看下wait 在 JVM  中的实现:jdk\src\share\native\java\lang\Object.c


#include <stdio.h>
#include <signal.h>
#include <limits.h>
#include "jni.h"
#include "jni_util.h"
#include "jvm.h"
#include "java_lang_Object.h"
static JNINativeMethod methods[] = {
    {"hashCode",    "()I",                    (void *)&JVM_IHashCode},
    {"wait",        "(J)V",                   (void *)&JVM_MonitorWait},
    {"notify",      "()V",                    (void *)&JVM_MonitorNotify},
    {"notifyAll",   "()V",                    (void *)&JVM_MonitorNotifyAll},
    {"clone",       "()Ljava/lang/Object;",   (void *)&JVM_Clone},
};
JNIEXPORT void JNICALL
Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls)
{
    (*env)->RegisterNatives(env, cls,
                            methods, sizeof(methods)/sizeof(methods[0]));
}
JNIEXPORT jclass JNICALL
Java_java_lang_Object_getClass(JNIEnv *env, jobject this)
{
    if (this == NULL) {
        JNU_ThrowNullPointerException(env, NULL);
        return 0;
    } else {
        return (*env)->GetObjectClass(env, this);
    }
}

openjdk-8-src-b132-03_mar_2014.zip\openjdk\hotspot\src\share\vm\runtime\objectMonitor.cpp


void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
   Thread * const Self = THREAD ;
   assert(Self->is_Java_thread(), "Must be Java thread!");
   JavaThread *jt = (JavaThread *)THREAD;
   DeferredInitialize () ;
   // Throw IMSX or IEX.
   CHECK_OWNER();
   EventJavaMonitorWait event;
   // check for a pending interrupt
   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
     // post monitor waited event.  Note that this is past-tense, we are done waiting.
     if (JvmtiExport::should_post_monitor_waited()) {
        // Note: 'false' parameter is passed here because the
        // wait was not timed out due to thread interrupt.
        JvmtiExport::post_monitor_waited(jt, this, false);
     }
     if (event.should_commit()) {
       post_monitor_wait_event(&event, 0, millis, false);
     }
     TEVENT (Wait - Throw IEX) ;
     THROW(vmSymbols::java_lang_InterruptedException());
     return ;
   }
   TEVENT (Wait) ;
   assert (Self->_Stalled == 0, "invariant") ;
   Self->_Stalled = intptr_t(this) ;
   jt->set_current_waiting_monitor(this);
   // create a node to be put into the queue
   // Critically, after we reset() the event but prior to park(), we must check
   // for a pending interrupt.
   ObjectWaiter node(Self);//Self 是Thread 对象,将当前线程封装成ObjectWaiter对象node
   node.TState = ObjectWaiter::TS_WAIT ;
   Self->_ParkEvent->reset() ;
   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
   // Enter the waiting queue, which is a circular doubly linked list in this case
   // but it could be a priority queue or any data structure.
   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
   // by the the owner of the monitor *except* in the case where park()
   // returns because of a timeout of interrupt.  Contention is exceptionally rare
   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
   AddWaiter (&node) ; //将 node加入到  ObjectWaiter 的_WaitSet 中
   Thread::SpinRelease (&_WaitSetLock) ;
   if ((SyncFlags & 4) == 0) {
      _Responsible = NULL ;
   }
   intptr_t save = _recursions; // record the old recursion count
   _waiters++;                  // increment the number of waiters
   _recursions = 0;             // set the recursion level to be 1
   exit (true, Self) ;                    // exit the monitor
   guarantee (_owner != Self, "invariant") ;
   // As soon as the ObjectMonitor's ownership is dropped in the exit()
   // call above, another thread can enter() the ObjectMonitor, do the
   // notify(), and exit() the ObjectMonitor. If the other thread's
   // exit() call chooses this thread as the successor and the unpark()
   // call happens to occur while this thread is posting a
   // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
   // handler using RawMonitors and consuming the unpark().
   //
   // To avoid the problem, we re-post the event. This does no harm
   // even if the original unpark() was not consumed because we are the
   // chosen successor for this monitor.
   if (node._notified != 0 && _succ == Self) {
      node._event->unpark();
   }
   // The thread is on the WaitSet list - now park() it.
   // On MP systems it's conceivable that a brief spin before we park
   // could be profitable.
   //
   // TODO-FIXME: change the following logic to a loop of the form
   //   while (!timeout && !interrupted && _notified == 0) park()
   int ret = OS_OK ;
   int WasNotified = 0 ;
   { // State transition wrappers
     OSThread* osthread = Self->osthread();
     OSThreadWaitState osts(osthread, true);
     {
       ThreadBlockInVM tbivm(jt);
       // Thread is in thread_blocked state and oop access is unsafe.
       jt->set_suspend_equivalent();
       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
           // Intentionally empty
       } else
       if (node._notified == 0) {
         if (millis <= 0) {
            Self->_ParkEvent->park () ;  //重点分析这句
         } else {
            ret = Self->_ParkEvent->park (millis) ; //重点分析这句
         }
       }
       // were we externally suspended while we were waiting?
       if (ExitSuspendEquivalent (jt)) {
          // TODO-FIXME: add -- if succ == Self then succ = null.
          jt->java_suspend_self();
       }
     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
     // from the WaitSet to the EntryList.
     // See if we need to remove Node from the WaitSet.
     // We use double-checked locking to avoid grabbing _WaitSetLock
     // if the thread is not on the wait queue.
     //
     // Note that we don't need a fence before the fetch of TState.
     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
     // written by the is thread. (perhaps the fetch might even be satisfied
     // by a look-aside into the processor's own store buffer, although given
     // the length of the code path between the prior ST and this load that's
     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
     // then we'll acquire the lock and then re-fetch a fresh TState value.
     // That is, we fail toward safety.
     if (node.TState == ObjectWaiter::TS_WAIT) {
         Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
         if (node.TState == ObjectWaiter::TS_WAIT) {
            DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
            assert(node._notified == 0, "invariant");
            node.TState = ObjectWaiter::TS_RUN ;
         }
         Thread::SpinRelease (&_WaitSetLock) ;
     }
     // The thread is now either on off-list (TS_RUN),
     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
     // The Node's TState variable is stable from the perspective of this thread.
     // No other threads will asynchronously modify TState.
     guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
     OrderAccess::loadload() ;
     if (_succ == Self) _succ = NULL ;
     WasNotified = node._notified ;
     // Reentry phase -- reacquire the monitor.
     // re-enter contended monitor after object.wait().
     // retain OBJECT_WAIT state until re-enter successfully completes
     // Thread state is thread_in_vm and oop access is again safe,
     // although the raw address of the object may have changed.
     // (Don't cache naked oops over safepoints, of course).
     // post monitor waited event. Note that this is past-tense, we are done waiting.
     if (JvmtiExport::should_post_monitor_waited()) {
       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
     }
     if (event.should_commit()) {
       post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
     }
     OrderAccess::fence() ;
     assert (Self->_Stalled != 0, "invariant") ;
     Self->_Stalled = 0 ;
     assert (_owner != Self, "invariant") ;
     ObjectWaiter::TStates v = node.TState ;
     if (v == ObjectWaiter::TS_RUN) {
         enter (Self) ;
     } else {
         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
         ReenterI (Self, &node) ;
         node.wait_reenter_end(this);
     }
     // Self has reacquired the lock.
     // Lifecycle - the node representing Self must not appear on any queues.
     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
     // want residual elements associated with this thread left on any lists.
     guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
     assert    (_owner == Self, "invariant") ;
     assert    (_succ != Self , "invariant") ;
   } // OSThreadWaitState()
   jt->set_current_waiting_monitor(NULL);
   guarantee (_recursions == 0, "invariant") ;
   _recursions = save;     // restore the old recursion count
   _waiters--;             // decrement the number of waiters
   // Verify a few postconditions
   assert (_owner == Self       , "invariant") ;
   assert (_succ  != Self       , "invariant") ;
   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   if (SyncFlags & 32) {
      OrderAccess::fence() ;
   }
   // check if the notification happened
   if (!WasNotified) {
     // no, it could be timeout or Thread.interrupt() or both
     // check for interrupt event, otherwise it is timeout
     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
       TEVENT (Wait - throw IEX from epilog) ;
       THROW(vmSymbols::java_lang_InterruptedException());
     }
   }
   // NOTE: Spurious wake up will be consider as timeout.
   // Monitor notify has precedence over thread interrupt.
}
  • ObjectWaiter node(Self);   Self 是Thread 对象,将当前线程封装成ObjectWaiter对象node;
  • ObjectMonitor::AddWaiter() 将 node加入到  ObjectWaiter 的_WaitSet 中;
  • exit (true, Self) ; // exit the monitor 线程退出monitor;
  • Self->_ParkEvent->park () ;  最终底层的park方法挂起线程;


参考资料:


相关文章
|
8月前
|
安全 前端开发 Java
JDK源码级别彻底剖析JVM类加载机制
JDK源码级别彻底剖析JVM类加载机制
|
5月前
|
监控 JavaScript Java
JVM源码级别分析G1发生FullGC元凶的是什么
线上系统遭遇频繁Old GC问题,监控显示出现多次“to-space exhausted”日志,这表明垃圾回收过程中因年轻代 Survivor 区或老年代空间不足导致对象晋升失败。通过 JVM 源码分析,此问题源于对象转移至老年代失败时,JVM 无法找到足够的空间存放存活对象。进一步排查发现大对象分配占用了预留空间,加剧了空间不足的情况。使用 JFR 分析工具定位到定期报表序列化导致大量大对象生成,通过改用堆外内存进行序列化输出,最终解决了频繁 Old GC 问题。
173 0
|
8月前
|
Arthas 缓存 Java
[Jvm]程序员的精进之路~JDK代理源码初探
[Jvm]程序员的精进之路~JDK代理源码初探
阿里Java高级岗中间件二面:GC+IO+JVM+多线程+Redis+数据库+源码
虽然“钱多、事少、离家近”的工作可能离技术人比较远,但是找到一份合适的工作,其实并不像想象中那么难。但是,有些技术人确实是认真努力工作,但在面试时表现出的能力水平却不足以通过面试,或拿到高薪,其实不外乎以下 2 个原因:
|
消息中间件 NoSQL Dubbo
阿里Java高级岗中间件二面:GC+IO+JVM+多线程+Redis+数据库+源码
一转眼,都2023年了,你是否在满意的公司?拿着理想的薪水? 虽然“钱多、事少、离家近”的工作可能离技术人比较远,但是找到一份合适的工作,其实并不像想象中那么难。但是,有些技术人确实是认真努力工作,但在面试时表现出的能力水平却不足以通过面试,或拿到高薪,其实不外乎以下 2 个原因: 第一,“知其然不知其所以然”。做了多年技术,开发了很多业务应用,但似乎并未思考过种种技术选择背后的逻辑。所以,他无法向面试官展现出自己未来技术能力的成长潜力。面试官也不会放心把具有一定深度的任务交给他。 第二,知识碎片化,不成系统。在面试中,面试者似乎无法完整、清晰地描述自己所开发的系统,或者使用的相关技术。
|
Java C++
JVM - 一个案例反推不同JDK版本的intern机制以及intern C++源码解析
JVM - 一个案例反推不同JDK版本的intern机制以及intern C++源码解析
106 0
|
前端开发 安全 Java
JVM-白话聊一聊JVM类加载和双亲委派机制源码解析
JVM-白话聊一聊JVM类加载和双亲委派机制源码解析
87 0
|
Java jvm-sandbox Windows
【alibaba/jvm-sandbox#01】debug源码的技巧
alibaba/jvm-sandbox是 一种JVM的非侵入式运行期 AOP 解决方案。沙箱容器提供 1. 动态增强类你所指定的类,获取你想要的参数和行信息甚至改变方法执行 2. 动态可插拔容器框架
471 0
Jvm源码剖析之synchronized锁机制执行原理
Jvm源码剖析之synchronized锁机制执行原理
Jvm源码剖析之synchronized锁机制执行原理
|
安全 Java 应用服务中间件
别再乱看教程了!从源码剖析JVM类加载机制,打通双亲委派机制!
别再乱看教程了!从源码剖析JVM类加载机制,打通双亲委派机制!
144 0

相关实验场景

更多