Python:正则表达式re模块(二)

简介: Python:正则表达式re模块(二)

search 方法



search 方法用于查找字符串的任何位置,它也是一次匹配,只要找到了一个匹配的结果就返回,而不是查找所有匹配的结果,它的一般使用形式如下:


search(string[, pos[, endpos]])


其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。


当匹配成功时,返回一个 Match 对象,如果没有匹配上,则返回 None。


让我们看看例子:


>>> import re
>>> pattern = re.compile('\d+')
>>> m = pattern.search('one12twothree34four')  # 这里如果使用 match 方法则不匹配
>>> m
<_sre.SRE_Match object at 0x10cc03ac0>
>>> m.group()
'12'
>>> m = pattern.search('one12twothree34four', 10, 30)  # 指定字符串区间
>>> m
<_sre.SRE_Match object at 0x10cc03b28>
>>> m.group()
'34'
>>> m.span()
(13, 15)


再来看一个例子:


# -*- coding: utf-8 -*-
import re
# 将正则表达式编译成 Pattern 对象
pattern = re.compile(r'\d+')
# 使用 search() 查找匹配的子串,不存在匹配的子串时将返回 None
# 这里使用 match() 无法成功匹配
m = pattern.search('hello 123456 789')
if m:
    # 使用 Match 获得分组信息
    print 'matching string:',m.group()
    # 起始位置和结束位置
    print 'position:',m.span()


执行结果:


matching string: 123456
position: (6, 12)



findall 方法



上面的 match 和 search 方法都是一次匹配,只要找到了一个匹配的结果就返回。然而,在大多数时候,我们需要搜索整个字符串,获得所有匹配的结果。


findall 方法的使用形式如下:


findall(string[, pos[, endpos]])


其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。


findall 以列表形式返回全部能匹配的子串,如果没有匹配,则返回一个空列表。


看看例子:


import re
pattern = re.compile(r'\d+')   # 查找数字
result1 = pattern.findall('hello 123456 789')
result2 = pattern.findall('one1two2three3four4', 0, 10)
print result1
print result2


执行结果:

['123456', '789']
['1', '2']


再先看一个栗子:


# re_test.py
import re
#re模块提供一个方法叫compile模块,提供我们输入一个匹配的规则
#然后返回一个pattern实例,我们根据这个规则去匹配字符串
pattern = re.compile(r'\d+\.\d*')
#通过partten.findall()方法就能够全部匹配到我们得到的字符串
result = pattern.findall("123.141593, 'bigcat', 232312, 3.15")
#findall 以 列表形式 返回全部能匹配的子串给result
for item in result:
    print item

运行结果:


123.141593
3.15


finditer 方法



finditer 方法的行为跟 findall 的行为类似,也是搜索整个字符串,获得所有匹配的结果。但它返回一个顺序访问每一个匹配结果(Match 对象)的迭代器。


看看例子:


# -*- coding: utf-8 -*-
import re
pattern = re.compile(r'\d+')
result_iter1 = pattern.finditer('hello 123456 789')
result_iter2 = pattern.finditer('one1two2three3four4', 0, 10)
print type(result_iter1)
print type(result_iter2)
print 'result1...'
for m1 in result_iter1:   # m1 是 Match 对象
    print 'matching string: {}, position: {}'.format(m1.group(), m1.span())
print 'result2...'
for m2 in result_iter2:
    print 'matching string: {}, position: {}'.format(m2.group(), m2.span())

执行结果:


<type 'callable-iterator'>
<type 'callable-iterator'>
result1...
matching string: 123456, position: (6, 12)
matching string: 789, position: (13, 16)
result2...
matching string: 1, position: (3, 4)
matching string: 2, position: (7, 8)


split 方法



split 方法按照能够匹配的子串将字符串分割后返回列表,它的使用形式如下:


split(string[, maxsplit])


其中,maxsplit 用于指定最大分割次数,不指定将全部分割。


看看例子:


import re
p = re.compile(r'[\s\,\;]+')
print p.split('a,b;; c   d')


执行结果:


['a', 'b', 'c', 'd']


sub 方法



sub 方法用于替换。它的使用形式如下:


sub(repl, string[, count])


其中,repl 可以是字符串也可以是一个函数:


如果 repl 是字符串,则会使用 repl 去替换字符串每一个匹配的子串,并返回替换后的字符串,另外,repl 还可以使用 id 的形式来引用分组,但不能使用编号 0;


如果 repl 是函数,这个方法应当只接受一个参数(Match 对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。


count 用于指定最多替换次数,不指定时全部替换。

看看例子:

import re
p = re.compile(r'(\w+) (\w+)') # \w = [A-Za-z0-9]
s = 'hello 123, hello 456'
print p.sub(r'hello world', s)  # 使用 'hello world' 替换 'hello 123' 和 'hello 456'
print p.sub(r'\2 \1', s)        # 引用分组
def func(m):
    return 'hi' + ' ' + m.group(2)
print p.sub(func, s)
print p.sub(func, s, 1)         # 最多替换一次

执行结果:

hello world, hello world
123 hello, 456 hello
hi 123, hi 456
hi 123, hello 456


匹配中文



在某些情况下,我们想匹配文本中的汉字,有一点需要注意的是,中文的 unicode 编码范围 主要在 [u4e00-u9fa5],这里说主要是因为这个范围并不完整,比如没有包括全角(中文)标点,不过,在大部分情况下,应该是够用的。


假设现在想把字符串 title = u'你好,hello,世界' 中的中文提取出来,可以这么做:


import re
title = u'你好,hello,世界'
pattern = re.compile(ur'[\u4e00-\u9fa5]+')
result = pattern.findall(title)
print result


注意到,我们在正则表达式前面加上了两个前缀 ur,其中 r 表示使用原始字符串,u 表示是 unicode 字符串。


执行结果:

[u'\u4f60\u597d', u'\u4e16\u754c']


注意:贪婪模式与非贪婪模式


贪婪模式:在整个表达式匹配成功的前提下,尽可能多的匹配 ( * );

非贪婪模式:在整个表达式匹配成功的前提下,尽可能少的匹配 ( ? );


Python里数量词默认是贪婪的。


示例一 : 源字符串:abbbc


使用贪婪的数量词的正则表达式 ab* ,匹配结果: abbb。

* 决定了尽可能多匹配 b,所以a后面所有的 b 都出现了。


使用非贪婪的数量词的正则表达式ab*?,匹配结果: a。

即使前面有 *,但是 ? 决定了尽可能少匹配 b,所以没有 b。


示例二 : 源字符串:aa<div>test1</div>bb<div>test2</div>cc


使用贪婪的数量词的正则表达式:<div>.*</div>


匹配结果:<div>test1</div>bb<div>test2</div>


这里采用的是贪婪模式。在匹配到第一个“</div>”时已经可以使整个表达式匹配成功,但是由于采用的是贪婪模式,所以仍然要向右尝试匹配,查看是否还有更长的可以成功匹配的子串。匹配到第二个“</div>”后,向右再没有可以成功匹配的子串,匹配结束,匹配结果为“<div>test1</div>bb<div>test2</div>”


使用非贪婪的数量词的正则表达式:<div>.*?</div>


匹配结果:<div>test1</div>


正则表达式二采用的是非贪婪模式,在匹配到第一个“</div>”时使整个表达式匹配成功,由于采用的是非贪婪模式,所以结束匹配,不再向右尝试,匹配结果为“<div>test1</div>”。


正则表达式测试网址


目录
相关文章
|
2月前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
401 7
|
2月前
|
监控 安全 程序员
Python日志模块配置:从print到logging的优雅升级指南
从 `print` 到 `logging` 是 Python 开发的必经之路。`print` 调试简单却难维护,日志混乱、无法分级、缺乏上下文;而 `logging` 支持级别控制、多输出、结构化记录,助力项目可维护性升级。本文详解痛点、优势、迁移方案与最佳实践,助你构建专业日志系统,让程序“有记忆”。
277 0
|
2月前
|
JSON 算法 API
Python中的json模块:从基础到进阶的实用指南
本文深入解析Python内置json模块的使用,涵盖序列化与反序列化核心函数、参数配置、中文处理、自定义对象转换及异常处理,并介绍性能优化与第三方库扩展,助你高效实现JSON数据交互。(238字)
410 4
|
2月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
323 0
|
2月前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
225 0
|
3月前
|
安全 大数据 程序员
Python operator模块的methodcaller:一行代码搞定对象方法调用的黑科技
`operator.methodcaller`是Python中处理对象方法调用的高效工具,替代冗长Lambda,提升代码可读性与性能。适用于数据过滤、排序、转换等场景,支持参数传递与链式调用,是函数式编程的隐藏利器。
146 4
|
3月前
|
存储 数据库 开发者
Python SQLite模块:轻量级数据库的实战指南
本文深入讲解Python内置sqlite3模块的实战应用,涵盖数据库连接、CRUD操作、事务管理、性能优化及高级特性,结合完整案例,助你快速掌握SQLite在小型项目中的高效使用,是Python开发者必备的轻量级数据库指南。
356 0
|
8月前
|
数据采集 监控 数据安全/隐私保护
Python正则表达式:用"模式密码"解锁复杂字符串
正则表达式是处理字符串的强大工具,本文以Python的`re`模块为核心,详细解析其原理与应用。从基础语法如字符类、量词到进阶技巧如贪婪匹配与预定义字符集,结合日志分析、数据清洗及网络爬虫等实战场景,展示正则表达式的强大功能。同时探讨性能优化策略(如预编译)和常见错误解决方案,帮助开发者高效掌握这一“瑞士军刀”。最后提醒,合理使用正则表达式,避免过度复杂化,追求简洁优雅的代码风格。
238 0
|
4月前
|
存储 安全 数据处理
Python 内置模块 collections 详解
`collections` 是 Python 内置模块,提供多种高效数据类型,如 `namedtuple`、`deque`、`Counter` 等,帮助开发者优化数据处理流程,提升代码可读性与性能,适用于复杂数据结构管理与高效操作场景。
376 0
|
5月前
|
数据安全/隐私保护 Python
抖音私信脚本app,协议私信群发工具,抖音python私信模块
这个实现包含三个主要模块:抖音私信核心功能类、辅助工具类和主程序入口。核心功能包括登录