iOS底层原理:OC对象底层探索之开辟内存(一)

简介: 在上篇文章iOS底层原理(二):OC对象底层探索之alloc初探 中,我们体验了 objc 底层源码的调试流程,也介绍了一部分 [JQPerson alloc] 在底层的工作流程,最终在callAlloc中走到了_objc_rootAllocWithZone方法。那么今天我们就来继续探索_objc_rootAllocWithZone方法之后的流程吧!

image.png


0-0.png

在上篇文章iOS底层原理(二):OC对象底层探索之alloc初探 中,我们体验了 objc 底层源码的调试流程,也介绍了一部分 [JQPerson alloc] 在底层的工作流程,最终在callAlloc中走到了_objc_rootAllocWithZone方法。那么今天我们就来继续探索_objc_rootAllocWithZone方法之后的流程吧!


继续alloc底层探索



首先,我们先把上文中介绍的[JQPerson alloc]的流程图拿出来


image.png

[JQPerson alloc]流程图新.png

看到这幅图,就找到了组织,找到了方向,45°仰望天空!!!好,我们接着往下看。

_class_createInstanceFromZone 创建实例对象

老规矩,还是打开我之前编译好的 objc4-818.2 项目,断点来到 main.m16行[JQPerson alloc]


image.png

接着点进alloc的源码中,前面的方法我们就省略了(上篇文章已经探索过),直接来到_objc_rootAllocWithZone 这个方法中


image.png

2.png

可以看到_objc_rootAllocWithZone方法中返回了_class_createInstanceFromZone这个方法的调用,毫不犹豫,直接来到_class_createInstanceFromZone方法


image.png


哎~,这才是我们想要看到的东西嘛!一直返回方法调用,啥时候才是底嘛!

废话不多说,直接断点一步步走,发现** _class_createInstanceFromZone** 中走了三个核心的方法:

size = cls->instanceSize(extraBytes);

obj = (id)calloc(1, size);

obj->initInstanceIsa(cls, hasCxxDtor);

最终走到

return obj;


image.png


image.png


image.png


instanceSize 计算实例对象所需要的内存大小

好,接着我们断点来到 instanceSize方法看一下


image.png


上面看图就明白了,那我们继续下一步,断点进入cache.fastInstanceSize


image.png

我们看到这里只有(x + size_t(15)) & ~size_t(15)这一句代码,那么这句代码是什么意思呢?


这其实是二进制位运算的一个对齐算法,**(x + size_t(15)) & ~size_t(15)在这里代表的是对齐16和16的整数倍数。为什么这么说呢?下面我们看个例子就明白了


image.png

由此我们可以得出结论:


  • align16就是取16的整数倍,不足的全部抹掉。这个算法和 >> 4 << 4 是一样的,得出的结果就是16的倍数。那么我们断点中传的值x = 8,所以,(8 + 15)& ~15 = 16
  • OC对象与对象之间的内存是以16字节对齐的。

此时,问题多的小明就要问了,为什么要以16字节对齐呢?

回答:


  • cpu 读取内存数据是以固定字节块来读取的,如果字节不对齐,那么对于1、2、4、8不同字节的数据,就会增加 cpu 的读取次数,从而降低了 cpu 的性能和读取速度。所以这是一个用空间换取时间的做法,主要还是对性能的提升。
  • 在一个对象中,我们什么也不做,isa 指针就占了8个字节,那么也就是说我们给对象随便添加个属性,就超过了8字节。如果以8字节对齐,对象之间紧挨着的几率就会大大增加,容易造成访问混乱(也就是野指针访问)。如果是32字节对齐,又比较浪费内存空间,因为比如9个字节的对象,32字节对齐,就浪费了23字节。所以,16字节对齐,既预留了部分空间,访问更安全,又不会浪费很多内存空间。

好,到此,我们就知道了instanceSize这一步,就是计算并返回了该对象所需的内存大小。

接着,我们就来拓展一个知识点:内存对齐


内存对齐


没有代码玩个🔨!!!老规矩,还是先上代码:


image.png

打印结果:

image.png

我们先了解一下sizeof、class_getInstanceSize、malloc_size什么意思:

sizeof :获取对象类型的内存大小

class_getInstanceSize :获取对象实际的内存大小

malloc_size :获取系统分配给该对象的内存大小

我们可以看出:


  1. p1pNew对象的 sizeof都是 8,这个不难理解,sizeof获取的是对象类型的内存大小,而类在底层的本质是结构体,对象的本质是结构体指针,占8个字节;


image.png


image.png


  1. 那么为什么class_getInstanceSize获取的内存是24,malloc_size获取的是32呢?

接下来,我们就一一揭开它的面纱。首先,我们先了解以下内存的原则:

1、数据成员对⻬规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员存储的起始位置要从该成员大小或者成员的子成员大小(只要该成员有子成员,比如说是数组,结构体等)的整数倍开始(比如int为4字节,则要从4的整数倍地址开始存储。 min(当前开始的位置mn) m=9 n=4 9 10 11 12

2、结构体作为成员:如果一个结构里有某些结构体成员,则结构体成员要从其内部最大元素大小的整数倍地址开始存储。(struct a里存有struct b,b里有char,int ,double等元素,那b应该从8的整数倍开始存储。)

3、收尾工作:结构体的总大小,也就是sizeof的结果,必须是其内部最大成员的整数倍,不足的要补⻬。

只有原理,没有例子,是没有说服力的。既然OC的类在底层的本质是结构体,我们就先拿结构体来举例。上代码:


image.png


在这里,我们发现 JQStruct1JQStruct2 内部的成员变量是一样的,只是位置不一样,但是内存大小却不一样,JQStruct3JQStruct1的区别就是JQStruct3中嵌套了一个JQStruct1,内存相差却很大。why? 这就是结构体内存对齐。

下面我根据内存对齐原则对JQStruct1JQStruct2JQStruct3进行简单的计算和分析:

JQStruct1

1. 变量a: 占8个字节,offset从0开始,即 [0 ~ 7] 存放a;

2. 变量b: 占4个字节,接着offset在8号位置,8是4的倍数,所以offset从8开始, 即 [8 ~ 11] 存放b;

3. 变量c: 占2个字节,接着offset来到12号位置,12是2的倍数,所以offset从12开始,即[12 ~ 13] 存放c;

4. 变量d: 占1个字节,接着offset来到14号位置,14是1的倍数,所以offset从14开始,,即 [14] 存放d。

JQStruct2

1. 变量a: 占8个字节,offset从0开始,即 [0 ~ 7] 存放a;

2. 变量d: 占1个字节,接着offset在8号位置,8是1的倍数,所以offset从8开始, 即 [8] 存放d;

3. 变量b: 占4个字节,接着offset来到9号位置,9不是4的倍数,所以offset往后继续移动,直到12号位置,才是4的倍数,即[12 ~ 15] 存放b;

4. 变量c: 占2个字节,接着offset来到16号位置,16是2的倍数,所以offset从16开始,,即 [16 17] 存放c。

JQStruct3

1. 变量a: 占8个字节,offset从0开始,即 [0 ~ 7] 存放a;

2. 变量b: 占4个字节,接着offset在8号位置,8是4的倍数,所以offset从8开始, 即 [8 ~ 11] 存放b;

3. 变量c: 占2个字节,接着offset来到12号位置,12是2的倍数,所以offset从12开始,即[12 ~ 13] 存放c;

4. 变量d: 占1个字节,接着offset来到14号位置,14是1的倍数,所以offset从14开始,,即 [14] 存放d。

5. 变量jqStr: 占16个字节(**`JQStruct1`**就是占16个字节),接着offset来到15号位置,15不是8(**`JQStruct1`**中最大的变量是a占个 8 字节)的倍数,所以offset往后继续移动,来到16号位置,16是8的整数倍,即 [16 ~ 31] 存放jqStr。

计算结果显示JQStruct1JQStruct2JQStruct3的实际的内存大小分别是15字节、18字节和32字节。但是我们打印出来的内存大小分别为16字节、24字节和32字节。这是因为:根据内存对齐原则中的第3条(结构体的总大小,也就是sizeof的结果,必须是其内部最大成员的整数倍,不足的要补⻬。),JQStruct1中最大的变量是a占个 8 字节。所以JQStruct1的实际内存大小必须是8的整数倍,15不是8的整数倍,向上取整,不足的自动补齐,结果为16字节。JQStruct2中最大的变量是a也占个 8 字节,同理,18也不是8的整数倍,向上取整,不足的自动补齐,结果为24字节。JQStruct3中则可以理解为非结构的成员计算内存大小后(对齐),再加上成员结构体的内存大小,也就是16+16=32字节。当然也可以把成员结构体中的成员拿出来一一计算。

由此我们也可以得出结论:

  • 结构体是以其最大成员的字节数对齐的。



相关文章
|
7月前
|
机器学习/深度学习 存储 算法
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
反向传播算法虽是深度学习基石,但面临内存消耗大和并行扩展受限的问题。近期,牛津大学等机构提出NoProp方法,通过扩散模型概念,将训练重塑为分层去噪任务,无需全局前向或反向传播。NoProp包含三种变体(DT、CT、FM),具备低内存占用与高效训练优势,在CIFAR-10等数据集上达到与传统方法相当的性能。其层间解耦特性支持分布式并行训练,为无梯度深度学习提供了新方向。
293 1
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
|
6月前
|
存储 缓存 Java
【高薪程序员必看】万字长文拆解Java并发编程!(5):深入理解JMM:Java内存模型的三大特性与volatile底层原理
JMM,Java Memory Model,Java内存模型,定义了主内存,工作内存,确保Java在不同平台上的正确运行主内存Main Memory:所有线程共享的内存区域,所有的变量都存储在主存中工作内存Working Memory:每个线程拥有自己的工作内存,用于保存变量的副本.线程执行过程中先将主内存中的变量读到工作内存中,对变量进行操作之后再将变量写入主内存,jvm概念说明主内存所有线程共享的内存区域,存储原始变量(堆内存中的对象实例和静态变量)工作内存。
227 0
|
算法 JavaScript 前端开发
新生代和老生代内存划分的原理是什么?
【10月更文挑战第29天】新生代和老生代内存划分是JavaScript引擎为了更高效地管理内存、提高垃圾回收效率而采用的一种重要策略,它充分考虑了不同类型对象的生命周期和内存使用特点,通过不同的垃圾回收算法和晋升机制,实现了对内存的有效管理和优化。
|
8月前
|
存储 Java
课时4:对象内存分析
接下来对对象实例化操作展开初步分析。在整个课程学习中,对象使用环节往往是最棘手的问题所在。
|
9月前
|
安全 C语言 C++
彻底摘明白 C++ 的动态内存分配原理
大家好,我是V哥。C++的动态内存分配允许程序在运行时请求和释放内存,主要通过`new`/`delete`(用于对象)及`malloc`/`calloc`/`realloc`/`free`(继承自C语言)实现。`new`分配并初始化对象内存,`delete`释放并调用析构函数;而`malloc`等函数仅处理裸内存,不涉及构造与析构。掌握这些可有效管理内存,避免泄漏和悬空指针问题。智能指针如`std::unique_ptr`和`std::shared_ptr`能自动管理内存,确保异常安全。关注威哥爱编程,了解更多全栈开发技巧。 先赞再看后评论,腰缠万贯财进门。
441 0
|
11月前
|
缓存 监控 算法
Python内存管理:掌握对象的生命周期与垃圾回收机制####
本文深入探讨了Python中的内存管理机制,特别是对象的生命周期和垃圾回收过程。通过理解引用计数、标记-清除及分代收集等核心概念,帮助开发者优化程序性能,避免内存泄漏。 ####
278 3
|
存储 编译器 Linux
【c++】类和对象(上)(类的定义格式、访问限定符、类域、类的实例化、对象的内存大小、this指针)
本文介绍了C++中的类和对象,包括类的概念、定义格式、访问限定符、类域、对象的创建及内存大小、以及this指针。通过示例代码详细解释了类的定义、成员函数和成员变量的作用,以及如何使用访问限定符控制成员的访问权限。此外,还讨论了对象的内存分配规则和this指针的使用场景,帮助读者深入理解面向对象编程的核心概念。
613 4
|
4月前
|
存储
阿里云轻量应用服务器收费标准价格表:200Mbps带宽、CPU内存及存储配置详解
阿里云香港轻量应用服务器,200Mbps带宽,免备案,支持多IP及国际线路,月租25元起,年付享8.5折优惠,适用于网站、应用等多种场景。
1583 0
|
4月前
|
存储 缓存 NoSQL
内存管理基础:数据结构的存储方式
数据结构在内存中的存储方式主要包括连续存储、链式存储、索引存储和散列存储。连续存储如数组,数据元素按顺序连续存放,访问速度快但扩展性差;链式存储如链表,通过指针连接分散的节点,便于插入删除但访问效率低;索引存储通过索引表提高查找效率,常用于数据库系统;散列存储如哈希表,通过哈希函数实现快速存取,但需处理冲突。不同场景下应根据访问模式、数据规模和操作频率选择合适的存储结构,甚至结合多种方式以达到最优性能。掌握这些存储机制是构建高效程序和理解高级数据结构的基础。
466 1

热门文章

最新文章

下一篇
oss云网关配置