A Brief Note about Boltzmann/Softmax Exploration Strategy

简介: One method that is often used in combination with the RL algorithms is the Beltzmann or softmax exploration strategy. The action selection strategy is still random, but selection probabili

One method that is often used in combination with the RL algorithms is the Beltzmann or softmax exploration strategy.
The action selection strategy is still random, but selection probabilities are weighted by their relative Q-values. This makes it more likely for the agent to choose good actions, whereas two actions that have similar Q-values will have almost the same probability to get selected. Its general form is

P(a)=eQ(s,a)TieQ(s,ai)T

in which P(a) is the probability of selecting action a and T is the temperature parameter. Higher values of T will move the selection more towards a purely random strategy and lower values will move to a fully greedy strategy.
相关文章
RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
2545 0
|
5月前
|
机器学习/深度学习 算法
【文献学习】Channel Estimation Method Based on Transformer in High Dynamic Environment
一种基于CNN和Transformer的信道估计方法,用于在高度动态环境中跟踪信道变化特征,并通过实验结果展示了其相比传统方法的性能提升。
66 0
|
机器学习/深度学习 自然语言处理 算法
Joint Information Extraction with Cross-Task and Cross-Instance High-Order Modeling 论文解读
先前的信息抽取(IE)工作通常独立地预测不同的任务和实例(例如,事件触发词、实体、角色、关系),而忽略了它们的相互作用,导致模型效率低下。
107 0
|
自然语言处理 Java 计算机视觉
ACL2023 - AMPERE: AMR-Aware Prefix for Generation-Based Event Argument Extraction Model
事件论元抽取(EAE)识别给定事件的事件论元及其特定角色。最近在基于生成的EAE模型方面取得的进展显示出了与基于分类的模型相比的良好性能和可推广性
199 0
|
机器学习/深度学习 存储 数据挖掘
Global Constraints with Prompting for Zero-Shot Event Argument Classification 论文解读
确定事件论元的角色是事件抽取的关键子任务。大多数以前的监督模型都利用了昂贵的标注,这对于开放域应用程序是不实际的。
79 0
|
机器学习/深度学习 自然语言处理 算法
TPLinker: Single-stage Joint Extraction of Entities and Relations Through Token Pair Linking 论文解读
近年来,从非结构化文本中提取实体和关系引起了越来越多的关注,但由于识别共享实体的重叠关系存在内在困难,因此仍然具有挑战性。先前的研究表明,联合学习可以显著提高性能。然而,它们通常涉及连续的相互关联的步骤,并存在暴露偏差的问题。
227 0
|
算法框架/工具 Windows
PAT (Advanced Level) Practice - 1053 Path of Equal Weight(30 分)
PAT (Advanced Level) Practice - 1053 Path of Equal Weight(30 分)
133 0
PAT (Advanced Level) Practice - 1096 Consecutive Factors(20 分)
PAT (Advanced Level) Practice - 1096 Consecutive Factors(20 分)
149 0
PAT (Advanced Level) Practice - 1118 Birds in Forest(25 分)
PAT (Advanced Level) Practice - 1118 Birds in Forest(25 分)
113 0

热门文章

最新文章