RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.

简介: RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.

修改代码。如下:

 def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        m = self.model[-1]  # Detect() module
        for mi, s in zip(m.m, m.stride):  # from
            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
            with torch.no_grad():
                b[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
                b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
AI浩
+关注
目录
打赏
0
0
0
0
151
分享
相关文章
RuntimeError: Given groups=1, weight of size 64 128 1 7, expected input[16,
RuntimeError: Given groups=1, weight of size 64 128 1 7, expected input[16,
3041 0
Pytorch中Trying to backward through the graph和one of the variables needed for gradient错误解决方案
Pytorch中Trying to backward through the graph和one of the variables needed for gradient错误解决方案
2340 0
Pytorch中Trying to backward through the graph和one of the variables needed for gradient错误解决方案
【Tensorflow】解决A `Concatenate` layer should be called on a list of at least 2 inputs
在TensorFlow 2.0中,使用Concatenate函数时出现错误,可以通过替换为tf.concat 来解决。
84 4
成功解决ValueError: Found input variables with inconsistent numbers of samples: [86, 891]
成功解决ValueError: Found input variables with inconsistent numbers of samples: [86, 891]
【完美解决】RuntimeError: one of the variables needed for gradient computation has been modified by an inp
将loss.backward()函数内的参数retain_graph值设置为True, loss.backward(retain_graph=True),如果retain_graph设置为False,计算过程中的中间变量使用完即被释放掉。
1847 0
RuntimeError: Can‘t call numpy() on Variable that requires grad. Use var.detach().numpy()
出现这个现象的原因是:待转换类型的PyTorch Tensor变量带有梯度,直接将其转换为numpy数据将破坏计算图,因此numpy拒绝进行数据转换,实际上这是对开发者的一种提醒。如果自己在转换数据时不需要保留梯度信息,可以在变量转换之前添加detach()调用。
232 0
ValueError: Found input variables with inconsistent numbers of samples: [140, 1120] 怎么解决?
这个错误通常发生在机器学习模型的训练中,它表示输入数据的样本数量不一致。在你的情况下,你的输入数据中有两个变量,一个变量的样本数量为140,另一个变量的样本数量为1120,因此这个错误就出现了。 为了解决这个问题,你需要确保所有输入变量的样本数量是相同的。你可以通过以下几种方式来解决这个问题: 检查数据:检查数据是否正确加载,可能会导致数据样本数量不一致。 数据清洗:检查是否有重复的样本或者缺失的样本,如果有则需要对数据进行清洗。 数据对齐:如果你使用了多个数据源,那么你需要对它们进行对齐以确保它们的样本数量一致。 数据重采样:如果数据中有不均衡的样本数量,你可以考虑使用数据重采样方
1053 0
解决TypeError: tf__update_state() got an unexpected keyword argument ‘sample_weight‘
解决TypeError: tf__update_state() got an unexpected keyword argument ‘sample_weight‘
302 0
解决TypeError: tf__update_state() got an unexpected keyword argument ‘sample_weight‘
解决办法:RuntimeError: dictionary changed size during iteration
解决办法:RuntimeError: dictionary changed size during iteration
189 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等