Google Earth Engine——Landsat图像在描述全球森林范围和变化方面的时间序列分析结果(2014年)

简介: Google Earth Engine——Landsat图像在描述全球森林范围和变化方面的时间序列分析结果(2014年)

Results from time-series analysis of Landsat images in characterizing global forest extent and change.

The 'first' and 'last' bands are reference multispectral imagery from the first and last available years for Landsat spectral bands 3, 4, 5, and 7. Reference composite imagery represents median observations from a set of quality-assessed growing-season observations for each of these bands.

Please see the User Notes for this Version 1.0, as well as the associated journal article: Hansen, Potapov, Moore, Hancher et al. “High-resolution global maps of 21st-century forest cover change.” Science 342.6160 (2013): 850-853.

Note that updated versions of this data are available. The newest version, Version 1.8 (produced with data through 2020), is available as UMD/hansen/global_forest_change_2020_v1_8.


Landsat图像在描述全球森林范围和变化方面的时间序列分析结果。

第一个 "和 "最后一个 "波段是Landsat光谱波段3、4、5和7的第一个和最后一个可用年份的参考多光谱图像。参考综合图像代表了这些波段中每个波段的一组质量评估过的生长季节观测值的中位数。

请参见该1.0版的用户说明以及相关的期刊文章。Hansen, Potapov, Moore, Hancher等人,"21世纪森林覆盖变化的高分辨率全球地图"。科学》342.6160(2013):850-853。

请注意,该数据的更新版本是可用的。最新的版本是1.8版(用到2020年的数据制作),可在UMD/hansen/global_forest_change_2020_v1_8中找到。

Dataset Availability

2000-01-01T00:00:00 - 2014-01-01T00:00:00

Dataset Provider

Hansen/UMD/Google/USGS/NASA

Collection Snippet

Copied

ee.Image("UMD/hansen/global_forest_change_2014")

Resolution

30.92 meters

Bands Table

Name Description Min Max Units Wavelength
treecover2000 Tree canopy cover for year 2000, defined as canopy closure for all vegetation taller than 5m in height. 0 100 %
loss Forest loss during the study period, defined as a stand-replacement disturbance (a change from a forest to non-forest state).
loss Bitmask
  • Bit 0: Forest loss during the study period.
    • 0: Not loss
    • 1: Loss
gain Forest gain during the period 2000–2012, defined as the inverse of loss (a non-forest to forest change entirely within the study period). Note that this has not been updated in subsequent versions.
gain Bitmask
  • Bit 0: Forest gain during the period 2000–2012.
    • 0: No gain
    • 1: Gain
first_b30 Landsat 7 band 3 (red) cloud-free image composite. Reference multispectral imagery from the first available year, typically 2000. 0.63-0.69μm
first_b40 Landsat 7 band 4 (NIR) cloud-free image composite. Reference multispectral imagery from the first available year, typically 2000. 0.77-0.90μm
first_b50 Landsat 7 band 5 (SWIR) cloud-free image composite. Reference multispectral imagery from the first available year, typically 2000. 1.55-1.75μm
first_b70 Landsat 7 band 7 (SWIR) cloud-free image composite. Reference multispectral imagery from the first available year, typically 2000. 2.09-2.35μm
last_b30 Landsat 7 band 3 (red) cloud-free image composite. Reference multispectral imagery from the last available year, typically the last year of the study period. 0.63-0.69μm
last_b40 Landsat 7 band 4 (NIR) cloud-free image composite. Reference multispectral imagery from the last available year, typically the last year of the study period. 0.77-0.90μm
last_b50 Landsat 7 band 5 (SWIR) cloud-free image composite. Reference multispectral imagery from the last available year, typically the last year of the study period. 1.55-1.75μm
last_b70 Landsat 7 band 7 (SWIR) cloud-free image composite. Reference multispectral imagery from the last available year, typically the last year of the study period. 2.09-2.35μm
datamask Three values representing areas of no data, mapped land surface, and permanent water bodies.
datamask Bitmask
  • Bits 0-1: Three values representing areas of no data, mapped land surface, and permanent water bodies.
    • 0: No data
    • 1: Mapped land surface
    • 2: Permanent water bodies
lossyear Year of gross forest cover loss event. A disaggregation of total forest loss to annual time scales. Encoded as either 0 (no loss) or else a value in the range 1–12, representing loss detected primarily in the year 2001–2012, respectively. 0 12


引用:

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend.

  1. “High-Resolution Global Maps of 21st-Century Forest Cover Change.” Science 342 (15 November): 850–53. Data available on-line at: https://earthenginepartners.appspot.com/science-2013-global-forest.

代码:

var dataset = ee.Image("UMD/hansen/global_forest_change_2014");
var visualization = {
  bands: ['treecover2000'],
  min: 0.0,
  max: 100.0,
  palette: [
    "3d3d3d","080a02","080a02","080a02","106e12","37a930",
    "03ff17",
  ]
};
Map.setCenter(-60.5, -20.0, 2);
Map.addLayer(dataset, visualization, "Tree Canopy Cover");


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2664 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
244 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
649 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
121 0
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
97 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
163 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
82 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
290 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
146 0
|
7月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
135 0
下一篇
DataWorks