Google Earth Engine——300米的空间分辨率提供了2010年地面和地下生物质碳密度的时间一致性和统一的全球地图,地面生物量地图整合了针对土地覆盖的木质、草原、耕地和苔原生物量的遥感

简介: Google Earth Engine——300米的空间分辨率提供了2010年地面和地下生物质碳密度的时间一致性和统一的全球地图,地面生物量地图整合了针对土地覆盖的木质、草原、耕地和苔原生物量的遥感


This dataset provides temporally consistent and harmonized global maps of aboveground and belowground biomass carbon density for the year 2010 at a 300-m spatial resolution. The aboveground biomass map integrates land-cover specific, remotely sensed maps of woody, grassland, cropland, and tundra biomass. Input maps were amassed from the published literature and, where necessary, updated to cover the focal extent or time period. The belowground biomass map similarly integrates matching maps derived from each aboveground biomass map and land-cover specific empirical models. Aboveground and belowground maps were then integrated separately using ancillary maps of percent tree cover and landcover and a rule-based decision tree. Maps reporting the accumulated uncertainty of pixel-level estimates are also provided.

Provider's note: The WCMC carbon biomass dataset represents conditions between 1982 and 2010 depending on land cover type. The relative patterns of carbon stocks are well represented with this dataset. The NASA/ORNL carbon biomass dataset represents biomass conditions for 2010, with uncertainty estimates at the pixel-level. Additional biomass of non-dominant land cover types are represented within each pixel. For more detailed information, please refer to the papers describing each dataset: WCMC(Soto-Navarro et al. 2020) and NASA/ORNL (Spawn et al. 2020)


该数据集以300米的空间分辨率提供了2010年地面和地下生物质碳密度的时间一致性和统一的全球地图。地面生物量地图整合了针对土地覆盖的木质、草原、耕地和苔原生物量的遥感地图。输入的地图是从已发表的文献中收集的,并在必要时更新以覆盖重点范围或时间段。地下生物量地图同样整合了从每个地上生物量地图和土地覆盖特定经验模型中得到的匹配地图。然后,利用树木覆盖率和土地覆盖率的辅助地图和基于规则的决策树,分别整合地上和地下地图。还提供了报告像素级估计的累积不确定性的地图。

提供者的说明:WCMC碳生物量数据集代表了1982年至2010年的情况,取决于土地覆盖类型。该数据集很好地体现了碳储量的相对模式。NASA/ORNL碳生物量数据集代表了2010年的生物量状况,在像素级有不确定性估计。每个像素内都有非主要土地覆盖类型的额外生物量。更详细的信息,请参考描述每个数据集的论文。WCMC(Soto-Navarro等人,2020)和NASA/ORNL(Spawn等人,2020)。

.

Dataset Availability

2010-01-01T00:00:00 - 2010-12-31T00:00:00

Dataset Provider

NASA ORNL DAAC at Oak Ridge National Laboratory

Collection Snippet

ee.ImageCollection("NASA/ORNL/biomass_carbon_density/v1")

Resolution

300 meters

Bands Table

Name Description Min* Max* Units
agb Aboveground living biomass carbon stock density of combined woody and herbaceous cover in 2010. This includes carbon stored in living plant tissues that are located above the earth’s surface (stems, bark, branches, twigs). This does not include leaf litter or coarse woody debris that were once attached to living plants but have since been deposited and are no longer living. 0 129 Mg C/ha
agb_uncertainty Uncertainty of estimated aboveground living biomass carbon density of combined woody and herbaceous cover in 2010. Uncertainty represents the cumulative standard error that has been propagated through the harmonization process using summation in quadrature. 0 85 Mg C/ha
bgb Belowground living biomass carbon stock density of combined woody and herbaceous cover in 2010. This includes carbon stored in living plant tissues that are located below the earth’s surface (roots). This does not include dead and/or dislocated root tissue, nor does it include soil organic matter. 0 57 Mg C/ha
bgb_uncertainty Uncertainty of estimated belowground living biomass carbon density of combined woody and herbaceous cover in 2010. Uncertainty represents the cumulative standard error that has been propagated through the harmonization process using summation in quadrature. 0 37 Mg C/ha


* = Values are estimated

数据引用:

Spawn, S.A., Sullivan, C.C., Lark, T.J. et al. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci Data 7, 112 (2020). https://doi.org/10.1038/s41597-020-0444-4

Spawn, S.A., and H.K. Gibbs. 2020. Global Aboveground and Belowground Biomass Carbon Density Maps for the Year 2010. ORNL DAAC, Oak Ridge, Tennessee, USA.Global Aboveground and Belowground Biomass Carbon Density Maps for the Year 2010, https://doi.org/10.3334/ORNLDAAC/1763

代码:

var dataset = ee.ImageCollection("NASA/ORNL/biomass_carbon_density/v1");
var visualization = {
  bands: ['agb'],
  min: -50.0,
  max: 80.0,
  palette: ['d9f0a3', 'addd8e', '78c679', '41ab5d', '238443', '005a32']
};
Map.setCenter(-60.0, 7.0, 4);
Map.addLayer(dataset, visualization, "Aboveground biomass carbon");


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2693 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
252 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
662 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
101 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
165 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
88 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
291 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
148 0
|
7月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
136 0
|
7月前
|
编解码 定位技术
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
223 0