Google Earth Engine——加拿大数字高程模型(CDEM)是加拿大自然资源部(NRCan)测高系统的一部分,源于现有的加拿大数字高程数据(CDED)

简介: Google Earth Engine——加拿大数字高程模型(CDEM)是加拿大自然资源部(NRCan)测高系统的一部分,源于现有的加拿大数字高程数据(CDED)

The Canadian Digital Elevation Model (CDEM) is part of Natural Resources Canada's (NRCan) altimetry system and stems from the existing Canadian Digital Elevation Data (CDED). In these data, elevations can be either ground or reflective surface elevations.

 

The CDEM is comprised of multiple DEMs with varying resolutions. These vary according to latitude and have a base resolution of 0.75 arc-seconds. For more information see the Product Specifications

Contains information licensed under the Open Government Licence – Canada.


加拿大数字高程模型(CDEM)是加拿大自然资源部(NRCan)测高系统的一部分,源于现有的加拿大数字高程数据(CDED)。在这些数据中,高程可以是地面高程,也可以是反射面高程。

CDEM是由多个分辨率不同的DEM组成的。这些数据因纬度而异,基本分辨率为0.75角秒。更多信息见产品规格

包含根据开放政府许可证-加拿大授权的信息。

Dataset Availability

1945-01-01T00:00:00 - 2011-01-01T00:00:00

Dataset Provider

NRCan

Collection Snippet

ee.ImageCollection("NRCan/CDEM")

Resolution

23.19 meters

Bands Table

Name Description Min* Max* Units
elevation Elevation -226 5944 Meters


* = Values are estimated

代码:

var dataset = ee.ImageCollection('NRCan/CDEM');
var elevation = dataset.select('elevation');
var elevationVis = {
  min: -50.0,
  max: 1500.0,
  palette: ['0905ff', 'ffefc4', 'ffffff'],
};
Map.setCenter(-139.3643, 63.3213, 9);
Map.addLayer(elevation, elevationVis, 'Elevation');


相关文章
|
10月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
3061 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
10月前
|
人工智能 自然语言处理 API
Google Gemma 模型服务:开放的生成式 AI 模型服务
Google Gemma 模型服务:开放的生成式 AI 模型服务
284 4
|
4天前
|
人工智能 边缘计算 自然语言处理
Google 发布其开源模型系列最新模型 Gemma 3
Google 发布了其开源模型系列的最新成员 Gemma 3,这是一款轻量级、高性能的 AI 模型,支持多语言和复杂任务。它具备 140+ 语言支持、128K-token 上下文窗口、增强的多模态分析能力以及函数调用功能,适用于聊天 AI、代码生成等多种场景。Gemma 3 在性能上超越 Llama 3-8B 和 Mistral 7B,且仅需单 GPU 即可运行,大幅降低计算成本。提供 1B 至 27B 不同参数规模版本,满足多样化需求,并优化了量化模型以适应边缘计算和移动设备。其多模态设计整合了 SigLIP 图像编码器,扩展上下文窗口至 128k token,显著提升了视觉和文本理解能力。
49 3
Google 发布其开源模型系列最新模型 Gemma 3
|
6月前
|
SQL 监控 大数据
通过Google Dataflow,我们能够构建一个高效、可扩展且易于维护的实时数据处理系统
【9月更文挑战第7天】随着大数据时代的到来,企业对高效数据处理的需求日益增加,特别是在实时分析和事件驱动应用中。Google Dataflow作为Google Cloud Platform的一项服务,凭借其灵活、可扩展的特点,成为实时大数据处理的首选。本文将介绍Dataflow的基本概念、优势,并通过一个电商日志分析的实际案例和示例代码,展示如何构建高效的数据处理管道。Dataflow不仅支持自动扩展和高可用性,还提供了多种编程语言支持和与GCP其他服务的紧密集成,简化了整个数据处理流程。通过Dataflow,企业可以快速响应业务需求,优化用户体验。
168 3
|
10月前
|
运维 监控 Serverless
一键开启 GPU 闲置模式,基于函数计算低成本部署 Google Gemma 模型服务
本文介绍如何使用函数计算 GPU 实例闲置模式低成本、快速的部署 Google Gemma 模型服务。
165054 58
|
9月前
|
人工智能 自然语言处理 机器人
[AI Google] 新的生成媒体模型和工具,专为创作者设计和构建
探索谷歌最新的生成媒体模型:用于高分辨率视频生成的 Veo 和用于卓越文本生成图像能力的 Imagen 3。还可以了解使用 Music AI Sandbox 创作的新演示录音。
[AI Google] 新的生成媒体模型和工具,专为创作者设计和构建
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
再超Transformer!Google提出两个新模型(Griffin、Hawk),强于Mamba,更省资源
【2月更文挑战第15天】再超Transformer!Google提出两个新模型(Griffin、Hawk),强于Mamba,更省资源
302 1
再超Transformer!Google提出两个新模型(Griffin、Hawk),强于Mamba,更省资源
|
10月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
804 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
10月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
143 0
|
10月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
214 0

热门文章

最新文章