Google Earth Engine ——MOD11A1/A2 V6产品提供1200×1200公里网格内的每日陆地表面温度(LST)和发射率值1KM分辨率数据集

简介: Google Earth Engine ——MOD11A1/A2 V6产品提供1200×1200公里网格内的每日陆地表面温度(LST)和发射率值1KM分辨率数据集

The MOD11A1 V6 product provides daily land surface temperature (LST) and emissivity values in a 1200 x 1200 kilometer grid. The temperature value is derived from the MOD11_L2 swath product. Above 30 degrees latitude, some pixels may have multiple observations where the criteria for clear-sky are met. When this occurs, the pixel value is the average of all qualifying observations. Provided along with both the day-time and night-time surface temperature bands and their quality indicator layers are MODIS bands 31 and 32 and six observation layers.

 

Documentation:


MOD11A1 V6产品提供1200×1200公里网格内的每日陆地表面温度(LST)和发射率值。温度值是由MOD11_L2的扫描产品得出的。在纬度30度以上,一些像素可能有多个符合晴空标准的观测。当这种情况发生时,像素值是所有符合条件的观测值的平均值。与白天和夜间地表温度带及其质量指标层一起提供的还有MODIS 31和32带以及六个观测层。

The MOD11A2 V6 product provides an average 8-day land surface temperature (LST) in a 1200 x 1200 kilometer grid. Each pixel value in MOD11A2 is a simple average of all the corresponding MOD11A1 LST pixels collected within that 8 day period. The 8 day compositing period was chosen because twice that period is the exact ground track repeat period of the Terra and Aqua platforms. In this product, along with both the day- and night-time surface temperature bands and their quality indicator (QC) layers, are also MODIS bands 31 and 32 and eight observation layers.


MOD11A2 V6产品提供了一个1200 x 1200公里网格内的8天平均陆地表面温度(LST)。MOD11A2中的每个像素值是该8天内收集的所有相应的MOD11A1 LST像素的简单平均值。选择8天的合成期是因为这段时间的两倍正是Terra和Aqua平台的地面轨道重复期。在这个产品中,除了白天和夜间的地表温度带及其质量指标(QC)层之外,还有MODIS的31和32带以及八个观测层。Dataset Availability

2000-03-05T00:00:00 - 2021-09-20T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Collection Snippet

ee.ImageCollection("MODIS/006/MOD11A1")

Resolution

1000 meters

Bands Table

Name Description Min Max Units Scale Offset
LST_Day_1km Daytime Land Surface Temperature 7500 65535 Kelvin 0.02 0
QC_Day Daytime LST Quality Indicators 0 0
QC_Day Bitmask
  • Bits 0-1: Mandatory QA flags
    • 0: LST produced, good quality, not necessary to examine more detailed QA
    • 1: LST produced, other quality, recommend examination of more detailed QA
    • 2: LST not produced due to cloud effects
    • 3: LST not produced primarily due to reasons other than cloud
  • Bits 2-3: Data quality flag
    • 0: Good data quality
    • 1: Other quality data
    • 2: TBD
    • 3: TBD
  • Bits 4-5: Emissivity error flag
    • 0: Average emissivity error ≤ 0.01
    • 1: Average emissivity error ≤ 0.02
    • 2: Average emissivity error ≤ 0.04
    • 3: Average emissivity error > 0.04
  • Bits 6-7: LST error flag
    • 0: Average LST error ≤ 1K
    • 1: Average LST error ≤ 2K
    • 2: Average LST error ≤ 3K
    • 3: Average LST error > 3K
Day_view_time Local time of day observation 0 240 Hours 0.1 0
Day_view_angle View zenith angle of day observation 0 130 Degrees 0 -65
LST_Night_1km Nighttime Land Surface Temperature 7500 65535 Kelvin 0.02 0
QC_Night Nighttime LST Quality indicators 0 0
QC_Night Bitmask
  • Bits 0-1: Mandatory QA flags
    • 0: LST produced, good quality, not necessary to examine more detailed QA
    • 1: LST produced, other quality, recommend examination of more detailed QA
    • 2: LST not produced due to cloud effects
    • 3: LST not produced primarily due to reasons other than cloud
  • Bits 2-3: Data quality flag
    • 0: Good data quality
    • 1: Other quality data
    • 2: TBD
    • 3: TBD
  • Bits 4-5: Emissivity error flag
    • 0: Average emissivity error ≤ 0.01
    • 1: Average emissivity error ≤ 0.02
    • 2: Average emissivity error ≤ 0.04
    • 3: Average emissivity error > 0.04
  • Bits 6-7: LST error flag
    • 0: Average LST error ≤ 1K
    • 1: Average LST error ≤ 2K
    • 2: Average LST error ≤ 3K
    • 3: Average LST error > 3K
Night_view_time Local time of night observation 0 240 Hours 0.1 0
Night_view_angle View zenith angle of night observation 0 130 Degrees 0 -65
Emis_31 Band 31 emissivity 1 255 0.002 0.49
Emis_32 Band 32 emissivity 1 255 0.002 0.49
Clear_day_cov Day clear-sky coverage 1 65535 0.0005 0
Clear_night_cov Night clear-sky coverage 1 65535 0.0005 0

  使用说明:MODIS data and products acquired through the LP DAAC have no restrictions on subsequent use, sale, or redistribution.

数据引用:

代码:

var dataset = ee.ImageCollection('MODIS/006/MOD11A1')
                  .filter(ee.Filter.date('2018-01-01', '2018-05-01'));
var landSurfaceTemperature = dataset.select('LST_Day_1km');
var landSurfaceTemperatureVis = {
  min: 13000.0,
  max: 16500.0,
  palette: [
    '040274', '040281', '0502a3', '0502b8', '0502ce', '0502e6',
    '0602ff', '235cb1', '307ef3', '269db1', '30c8e2', '32d3ef',
    '3be285', '3ff38f', '86e26f', '3ae237', 'b5e22e', 'd6e21f',
    'fff705', 'ffd611', 'ffb613', 'ff8b13', 'ff6e08', 'ff500d',
    'ff0000', 'de0101', 'c21301', 'a71001', '911003'
  ],
};
Map.setCenter(6.746, 46.529, 2);
Map.addLayer(
    landSurfaceTemperature, landSurfaceTemperatureVis,
    'Land Surface Temperature');

A1

A2



相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2691 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
662 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
101 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
165 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
88 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
291 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
148 0
|
7月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
136 0
|
7月前
|
编解码 定位技术
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
221 0
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
251 0