Google Earth Engine——全球增强植被指数(EVI)产品的基础数据集是MODIS BRDF校正图像(MCD43B4)

简介: Google Earth Engine——全球增强植被指数(EVI)产品的基础数据集是MODIS BRDF校正图像(MCD43B4)

The underlying dataset for this Enhanced Vegetation Index (EVI) product is MODIS BRDF-corrected imagery (MCD43B4), which was gap-filled using the approach outlined in Weiss et al. (2014) to eliminate missing data caused by factors such as cloud cover. Gap-free outputs were then aggregated temporally and spatially to produce the monthly ≈5km product.

This dataset was produced by Harry Gibson and Daniel Weiss of the Malaria Atlas Project (Big Data Institute, University of Oxford, United Kingdom, [http://www.map.ox.ac.uk/] (http://www.map.ox.ac.uk/)).


该增强植被指数(EVI)产品的基础数据集是MODIS BRDF校正图像(MCD43B4),使用Weiss等人(2014)中概述的方法填补了该图像的缺口,以消除由云层等因素造成的数据缺失。然后将无间隙输出在时间和空间上进行汇总,产生每月的≈5公里产品。

该数据集由Malaria Atlas项目的Harry Gibson和Daniel Weiss制作(英国牛津大学大数据研究所,[http://www.map.ox.ac.uk/] (http://www.map.ox.ac.uk/))。

Dataset Availability

2001-02-01T00:00:00 - 2015-06-01T00:00:00

Dataset Provider

Oxford Malaria Atlas Project

Collection Snippet

ee.ImageCollection("Oxford/MAP/EVI_5km_Monthly")

Resolution

5000 meters

Bands Table

Name Description Min* Max* Units
Mean The mean value of the Enhanced Vegetation Index for each aggregated pixel. 0 1
FilledProportion A quality control band that indicates the percentage of each resulting pixel that was comprised of raw data (as opposed to gap-filled estimates). 0 100 %

* = Values are estimated

数据引用:

Weiss, D.J., P.M. Atkinson, S. Bhatt, B. Mappin, S.I. Hay & P.W. Gething (2014) An effective approach for gap-filling continental scale remotely sensed time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 106-118.

代码:

var dataset = ee.ImageCollection('Oxford/MAP/EVI_5km_Monthly')
                  .filter(ee.Filter.date('2015-01-01', '2015-12-31'));
var evi = dataset.select('Mean');
var eviVis = {
  min: 0.0,
  max: 1.0,
  palette: [
    'ffffff', 'fcd163', '99b718', '66a000', '3e8601', '207401', '056201',
    '004c00', '011301'
  ],
};
Map.setCenter(-60.5, -20.0, 2);
Map.addLayer(evi, eviVis, 'EVI');


相关文章
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
86 0
|
6月前
|
传感器 编解码 区块链
Google Earth Engine(GEE)——Landsat8/modis/sentinel2 NDVI时序影像差异对比分析图表
Google Earth Engine(GEE)——Landsat8/modis/sentinel2 NDVI时序影像差异对比分析图表
167 0
|
4月前
|
自然语言处理 安全 Shell
Linux 提权-SUID/SGID_1 本文通过 Google 翻译 SUID | SGID Part-1 – Linux Privilege Escalation 这篇文章所产生,本人仅是对机器翻译中部分表达别扭的字词进行了校正及个别注释补充。
接下来,让我们看看 SUID3NUM 在枚举 SUID 二进制文件方面的表现如何。 3.2、枚举 SUID 二进制文件 – SUID3NUM 我们将用来枚举 SUID 二进制文件的第二个工具是 SUID3NUM。这是一个很棒的工具,因为它是专门为枚举 SUID 二进制文件而创建的。但这还不是全部,它还提供了可用于提升权限的命令(命令从 GTFOBins 中提取)。 这还不是最好的部分,SUID3NUM 还具有内置的 autopwn 功能,可以通过 -e 开关激活! 在 OSCP 考试中也使用此工具,只要您不使用自动利用功能。 3.2.1、下载并执行 SUID3NUM 我们可以从 GitHubs
37 0
|
6月前
|
人工智能
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
127 0
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
|
6月前
|
人工智能
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
64 0
|
6月前
|
人工智能 atlas
Google Earth Engine(GEE)RADD - RAdar for Detecting Deforestation-基于Sentinel-1的10米空间尺度的湿润热带森林扰动预警数据集
Google Earth Engine(GEE)RADD - RAdar for Detecting Deforestation-基于Sentinel-1的10米空间尺度的湿润热带森林扰动预警数据集
60 0
|
6月前
|
传感器 编解码 人工智能
Google Earth Engine(GEE)——存档的NRT FIRMS全球VIIRS和MODIS火灾产品矢量数据
Google Earth Engine(GEE)——存档的NRT FIRMS全球VIIRS和MODIS火灾产品矢量数据
141 0
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2415 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
138 0
|
6月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
76 0

热门文章

最新文章

下一篇
无影云桌面