2.6单调队列
调队列 —— 模板题 AcWing 154. 滑动窗口
常见模型:找出滑动窗口中的最大值/最小值
int hh = 0, tt = -1; for (int i = 0; i < n; i ++ ) { while (hh <= tt && check_out(q[hh])) hh ++ ; // 判断队头是否滑出窗口 while (hh <= tt && check(q[tt], i)) tt -- ; q[ ++ tt] = i; }
2.6.1 154. 滑动窗口
给定一个大小为 n≤106 的数组。
有一个大小为 k 的滑动窗口,它从数组的最左边移动到最右边。
你只能在窗口中看到 k 个数字。
每次滑动窗口向右移动一个位置。
以下是一个例子:
该数组为 [1 3 -1 -3 5 3 6 7],k 为 3。
你的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。
输入格式
输入包含两行。
第一行包含两个整数 n 和 k,分别代表数组长度和滑动窗口的长度。
第二行有 n 个整数,代表数组的具体数值。
同行数据之间用空格隔开。
输出格式
输出包含两个。
第一行输出,从左至右,每个位置滑动窗口中的最小值。
第二行输出,从左至右,每个位置滑动窗口中的最大值。
输入样例:
8 3
1 3 -1 -3 5 3 6 7
输出样例:
-1 -3 -3 -3 3 3
3 3 5 5 6 7
#include<bits/stdc++.h> using namespace std; const int N=1000010; int n,k; int a[N],q[N]; int main() { cin>>n>>k; for(int i=0;i<n;i++) { cin>>a[i]; } int hh=0,tt=-1; for(int i=0;i<n;i++) { if(hh<=tt&&i-k+1>q[hh]) hh++; while(hh<=tt&&a[q[tt]]>=a[i]) tt--; q[++tt]=i; if(i>=k-1) { cout<<a[q[hh]]<<" "; } } cout<<endl; hh=0,tt=-1; for(int i=0;i<n;i++) { if(hh<=tt&&i-k+1>q[hh]) hh++; while(hh<=tt&&a[q[tt]]<=a[i]) tt--; q[++tt]=i; if(i>=k-1) { cout<<a[q[hh]]<<" "; } } cout<<endl; return 0; }
2.7KMP
KMP —— 模板题 AcWing 831. KMP字符串
// s[]是长文本,p[]是模式串,n是s的长度,m是p的长度 求模式串的Next数组: for (int i = 2, j = 0; i <= m; i ++ ) { while (j && p[i] != p[j + 1]) j = ne[j]; if (p[i] == p[j + 1]) j ++ ; ne[i] = j; } // 匹配 for (int i = 1, j = 0; i <= n; i ++ ) { while (j && s[i] != p[j + 1]) j = ne[j]; if (s[i] == p[j + 1]) j ++ ; if (j == m) { j = ne[j]; // 匹配成功后的逻辑 } }
2.7.1 831. KMP字符串
给定一个模式串 S,以及一个模板串 P,所有字符串中只包含大小写英文字母以及阿拉伯数字。
模板串 P 在模式串 S 中多次作为子串出现。
求出模板串 P 在模式串 S 中所有出现的位置的起始下标。
输入格式
第一行输入整数 N,表示字符串 P 的长度。
第二行输入字符串 P。
第三行输入整数 M,表示字符串 S 的长度。
第四行输入字符串 S。
输出格式
共一行,输出所有出现位置的起始下标(下标从 0 开始计数),整数之间用空格隔开。
数据范围
1≤N≤105
1≤M≤106
输入样例:
3
aba
5
ababa
输出样例:
0 2
#include<bits/stdc++.h> using namespace std; const int N=100010,M=1000010; int n,m; int ne[N]; char s[M],p[N]; int main() { cin>>n>>p+1; cin>>m>>s+1; for(int i=2,j=0;i<=n;i++) { while(j&&p[i]!=p[j+1]) j=ne[j]; if(p[i]==p[j+1]) j++; ne[i]=j; } for(int i=1,j=0;i<=m;i++) { while(j&&s[i]!=p[j+1]) j=ne[j]; if(s[i]==p[j+1]) j++; if(j==n) { cout<<i-n<<" "; j=ne[j]; } } return 0; }
2.8Trie
Trie树 —— 模板题 AcWing 835. Trie字符串统计
int son[N][26], cnt[N], idx; // 0号点既是根节点,又是空节点 // son[][]存储树中每个节点的子节点 // cnt[]存储以每个节点结尾的单词数量 // 插入一个字符串 void insert(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) son[p][u] = ++ idx; p = son[p][u]; } cnt[p] ++ ; } // 查询字符串出现的次数 int query(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) return 0; p = son[p][u]; } return cnt[p]; }
2.8.1 835. Trie字符串统计
维护一个字符串集合,支持两种操作:
I x 向集合中插入一个字符串 x;
Q x 询问一个字符串在集合中出现了多少次。
共有 N 个操作,输入的字符串总长度不超过 105,字符串仅包含小写英文字母。
输入格式
第一行包含整数 N,表示操作数。
接下来 N 行,每行包含一个操作指令,指令为 I x 或 Q x 中的一种。
输出格式
对于每个询问指令 Q x,都要输出一个整数作为结果,表示 x 在集合中出现的次数。
每个结果占一行。
数据范围
1≤N≤2∗104
输入样例:
5
I abc
Q abc
Q ab
I ab
Q ab
输出样例:
1
0
1
#include<bits/stdc++.h> using namespace std; const int N=100010; int n; int son[N][26],cnt[N],idx=0; void _insert(string str) { int p=0; for(int i=0;i<str.length();i++) { int u=str[i]-'a'; if(!son[p][u]) son[p][u]=++idx; p=son[p][u]; } cnt[p]++; } int query(string str) { int p=0; for(int i=0;i<str.length();i++) { int u=str[i]-'a'; if(!son[p][u]) return 0; p=son[p][u]; } return cnt[p]; } int main() { cin>>n; while(n--) { char op; string str; cin>>op>>str; if(op=='I') { _insert(str); } else { cout<<query(str)<<endl; } } return 0; }
2.8.2 143. 最大异或对
在给定的 N 个整数 A1,A2……AN 中选出两个进行 xor(异或)运算,得到的结果最大是多少?
输入格式
第一行输入一个整数 N。
第二行输入 N 个整数 A1~AN。
输出格式
输出一个整数表示答案。
数据范围
1≤N≤105,
0≤Ai<231
输入样例:
3
1 2 3
输出样例:
3
#include<bits/stdc++.h> using namespace std; const int N=100010,M=3000010; int n; int a[N]; int son[M][2],idx; void _insert(int x) { int p=0; for(int i=30;i>=0;i--) { int u=x>>i&1; if(!son[p][u]) son[p][u]=++idx; p=son[p][u]; } } int query(int x) { int p=0,res=0; for(int i=30;i>=0;i--) { int s=x>>i&1; if(son[p][!s]) { res=res+(1<<i); p=son[p][!s]; } else p=son[p][s]; } return res; } int main() { cin>>n; for(int i=0;i<n;i++) { cin>>a[i]; _insert(a[i]); } int ans=0; for(int i=0;i<n;i++) { ans=max(ans,query(a[i])); } cout<<ans; return 0; }
2.9并查集
并查集 —— 模板题 AcWing 836. 合并集合, AcWing 837. 连通块中点的数量
(1)朴素并查集:
int p[N]; //存储每个点的祖宗节点 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) p[x] = find(p[x]); return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) p[i] = i; // 合并a和b所在的两个集合: p[find(a)] = find(b);
(2)维护size的并查集:
int p[N], size[N]; //p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) p[x] = find(p[x]); return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) { p[i] = i; size[i] = 1; } // 合并a和b所在的两个集合: size[find(b)] += size[find(a)]; p[find(a)] = find(b);
(3)维护到祖宗节点距离的并查集:
int p[N], d[N]; //p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) { int u = find(p[x]); d[x] += d[p[x]]; p[x] = u; } return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) { p[i] = i; d[i] = 0; } // 合并a和b所在的两个集合: p[find(a)] = find(b); d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量
2.9.1 836. 合并集合
一共有 n 个数,编号是 1∼n,最开始每个数各自在一个集合中。
现在要进行 m 个操作,操作共有两种:
M a b,将编号为 a 和 b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;
Q a b,询问编号为 a 和 b 的两个数是否在同一个集合中;
输入格式
第一行输入整数 n 和 m。
接下来 m 行,每行包含一个操作指令,指令为 M a b 或 Q a b 中的一种。
输出格式
对于每个询问指令 Q a b,都要输出一个结果,如果 a 和 b 在同一集合内,则输出 Yes,否则输出 No。
每个结果占一行。
数据范围
1≤n,m≤105
输入样例:
4 5
M 1 2
M 3 4
Q 1 2
Q 1 3
Q 3 4
输出样例:
Yes
No
Yes
#include<bits/stdc++.h> using namespace std; const int N=100010; int n,m; int p[N]; int findP(int x) { if(p[x]!=x) p[x]=findP(p[x]); return p[x]; } int main() { for(int i=0;i<N;i++) p[i]=i; cin>>n>>m; while(m--) { char op; int a,b; cin>>op>>a>>b; if(op=='M') { if(findP(a)!=findP(b)) { p[findP(a)]=findP(b); } } else { if(findP(a)==findP(b)) cout<<"Yes"<<endl; else cout<<"No"<<endl; } } return 0; }
2.9.2 837. 连通块中点的数量
给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。
现在要进行 m 个操作,操作共有三种:
C a b,在点 a 和点 b 之间连一条边,a 和 b 可能相等;
Q1 a b,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;
Q2 a,询问点 a 所在连通块中点的数量;
输入格式
第一行输入整数 n 和 m。
接下来 m 行,每行包含一个操作指令,指令为 C a b,Q1 a b 或 Q2 a 中的一种。
输出格式
对于每个询问指令 Q1 a b,如果 a 和 b 在同一个连通块中,则输出 Yes,否则输出 No。
对于每个询问指令 Q2 a,输出一个整数表示点 a 所在连通块中点的数量
每个结果占一行。
数据范围
1≤n,m≤105
输入样例:
5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5
输出样例:
Yes
2
3
#include<bits/stdc++.h> using namespace std; const int N=100010; int n,m; int p[N],sz[N]; int findP(int x) { if(p[x]!=x) p[x]=findP(p[x]); return p[x]; } int main() { for(int i=0;i<N;i++) { p[i]=i; sz[i]=1; } cin>>n>>m; while(m--) { string op; cin>>op; int a,b; if(op=="C") { cin>>a>>b; if(a!=b) { if(findP(a)!=findP(b)) { sz[findP(b)]+=sz[findP(a)]; } p[findP(a)]=findP(b); } } else if(op=="Q1") { cin>>a>>b; if(findP(a)==findP(b)) cout<<"Yes"<<endl; else cout<<"No"<<endl; } else { cin>>a; cout<<sz[findP(a)]<<endl; } } return 0; }
2.9.3 240. 食物链
动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形。
A 吃 B,B 吃 C,C 吃 A。
现有 N 个动物,以 1∼N 编号。
每个动物都是 A,B,C 中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这 N 个动物所构成的食物链关系进行描述:
第一种说法是 1 X Y,表示 X 和 Y 是同类。
第二种说法是 2 X Y,表示 X 吃 Y。
此人对 N 个动物,用上述两种说法,一句接一句地说出 K 句话,这 K 句话有的是真的,有的是假的。
当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
当前的话与前面的某些真的话冲突,就是假话;
当前的话中 X 或 Y 比 N 大,就是假话;
当前的话表示 X 吃 X,就是假话。
你的任务是根据给定的 N 和 K 句话,输出假话的总数。
输入格式
第一行是两个整数 N 和 K,以一个空格分隔。
以下 K 行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中 D 表示说法的种类。
若 D=1,则表示 X 和 Y 是同类。
若 D=2,则表示 X 吃 Y。
输出格式
只有一个整数,表示假话的数目。
数据范围
1≤N≤50000,
0≤K≤100000
输入样例:
100 7
1 101 1
2 1 2
2 2 3
2 3 3
1 1 3
2 3 1
1 5 5
输出样例:
3
#include<bits/stdc++.h> using namespace std; const int N=50010; int n,k; int p[N],d[N]; int findP(int x) { if(p[x]!=x) { int t=findP(p[x]); d[x]+=d[p[x]]; p[x]=t; } return p[x]; } int main() { for(int i=0;i<N;i++) { p[i]=i; } cin>>n>>k; int ans=0; for(int i=1;i<=k;i++) { int t,x,y; cin>>t>>x>>y; if(x>n||y>n) ans++; else { int px=findP(x),py=findP(y); if(t==1) { if(px==py) { if((d[x]-d[y])%3) ans++; } else { p[px]=py; d[px]=d[y]-d[x]; } } else { if(px==py) { if((d[x]-d[y]-1)%3) ans++; } else { p[px]=py; d[px]=d[y]-d[x]+1; } } } } cout<<ans; return 0; }
2.10堆
堆 —— 模板题 AcWing 838. 堆排序, AcWing 839. 模拟堆
// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1 // ph[k]存储第k个插入的点在堆中的位置 // hp[k]存储堆中下标是k的点是第几个插入的 int h[N], ph[N], hp[N], size; // 交换两个点,及其映射关系 void heap_swap(int a, int b) { swap(ph[hp[a]],ph[hp[b]]); swap(hp[a], hp[b]); swap(h[a], h[b]); } void down(int u) { int t = u; if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2; if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1; if (u != t) { heap_swap(u, t); down(t); } } void up(int u) { while (u / 2 && h[u] < h[u / 2]) { heap_swap(u, u / 2); u >>= 1; } } // O(n)建堆 for (int i = n / 2; i; i -- ) down(i);
2.10.1 838. 堆排序
输入一个长度为 n 的整数数列,从小到大输出前 m 小的数。
输入格式
第一行包含整数 n 和 m。
第二行包含 n 个整数,表示整数数列。
输出格式
共一行,包含 m 个整数,表示整数数列中前 m 小的数。
数据范围
1≤m≤n≤105,
1≤数列中元素≤109
输入样例:
5 3
4 5 1 3 2
输出样例:
1 2 3
#include<bits/stdc++.h> using namespace std; const int N=100010; int n,m; priority_queue<int,vector<int>,greater<int> > q; int main() { cin>>n>>m; for(int i=0;i<n;i++) { int x; cin>>x; q.push(x); } while(m--) { cout<<q.top()<<" "; q.pop(); } }
2.10.2 839. 模拟堆
维护一个集合,初始时集合为空,支持如下几种操作:
I x,插入一个数 x;
PM,输出当前集合中的最小值;
DM,删除当前集合中的最小值(数据保证此时的最小值唯一);
D k,删除第 k 个插入的数;
C k x,修改第 k 个插入的数,将其变为 x;
现在要进行 N 次操作,对于所有第 2 个操作,输出当前集合的最小值。
输入格式
第一行包含整数 N。
接下来 N 行,每行包含一个操作指令,操作指令为 I x,PM,DM,D k 或 C k x 中的一种。
输出格式
对于每个输出指令 PM,输出一个结果,表示当前集合中的最小值。
每个结果占一行。
数据范围
1≤N≤105
−109≤x≤109
数据保证合法。
输入样例:
8
I -10
PM
I -10
D 1
C 2 8
I 6
PM
DM
输出样例:
-10
6
#include<bits/stdc++.h> using namespace std; const int N=100010; int n; int h[N],sz=0; int ph[N],hp[N]; void heap_swap(int a,int b) { swap(ph[hp[a]],ph[hp[b]]); swap(hp[a],hp[b]); swap(h[a],h[b]); } void down(int u) { int t=u; if(2*u<=sz&&h[2*u]<h[t]) t=2*u; if(2*u+1<=sz&&h[2*u+1]<h[t]) t=2*u+1; if(u!=t) { heap_swap(u,t); down(t); } } void up(int u) { while(u/2>0&&h[u]<h[u/2]) { heap_swap(u,u/2); u/=2; } } int main() { int id=0; cin>>n; while(n--) { string op; int k,x; cin>>op; if(op=="I") { cin>>x; h[++sz]=x; id++; ph[id]=sz,hp[sz]=id; up(sz); } else if(op=="PM") cout<<h[1]<<endl; else if(op=="DM") { heap_swap(1,sz); sz--; down(1); } else if(op=="D") { cin>>k; k=ph[k]; heap_swap(k,sz); sz--; down(k),up(k); } else if(op=="C") { cin>>k>>x; k=ph[k]; h[k]=x; down(k),up(k); } } return 0; }
2.11哈希表
一般哈希 —— 模板题 AcWing 840. 模拟散列表
(1) 拉链法
int h[N], e[N], ne[N], idx; // 向哈希表中插入一个数 void insert(int x) { int k = (x % N + N) % N; e[idx] = x; ne[idx] = h[k]; h[k] = idx ++ ; } // 在哈希表中查询某个数是否存在 bool find(int x) { int k = (x % N + N) % N; for (int i = h[k]; i != -1; i = ne[i]) if (e[i] == x) return true; return false; }
int h[N]; // 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置 int find(int x) { int t = (x % N + N) % N; while (h[t] != null && h[t] != x) { t ++ ; if (t == N) t = 0; } return t; }
字符串哈希 —— 模板题 AcWing 841. 字符串哈希
核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低
小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果
typedef unsigned long long ULL;
ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64
// 初始化 p[0] = 1; for (int i = 1; i <= n; i ++ ) { h[i] = h[i - 1] * P + str[i]; p[i] = p[i - 1] * P; } // 计算子串 str[l ~ r] 的哈希值 ULL get(int l, int r) { return h[r] - h[l - 1] * p[r - l + 1]; }
2.11.1 840. 模拟散列表
维护一个集合,支持如下几种操作:
I x,插入一个数 x;
Q x,询问数 x 是否在集合中出现过;
现在要进行 N 次操作,对于每个询问操作输出对应的结果。
输入格式
第一行包含整数 N,表示操作数量。
接下来 N 行,每行包含一个操作指令,操作指令为 I x,Q x 中的一种。
输出格式
对于每个询问指令 Q x,输出一个询问结果,如果 x 在集合中出现过,则输出 Yes,否则输出 No。
每个结果占一行。
数据范围
1≤N≤105
−109≤x≤109
输入样例:
5
I 1
I 2
I 3
Q 2
Q 5
输出样例:
Yes
No
#include<bits/stdc++.h> using namespace std; map<int,bool> mp; int n; int main() { cin>>n; while(n--) { char op; int x; cin>>op>>x; if(op=='I') mp[x]=true; else { if(mp.count(x)) cout<<"Yes"<<endl; else cout<<"No"<<endl; } } return 0; }
2.11.2 841. 字符串哈希
给定一个长度为 n 的字符串,再给定 m 个询问,每个询问包含四个整数 l1,r1,l2,r2,请你判断 [l1,r1] 和 [l2,r2] 这两个区间所包含的字符串子串是否完全相同。
字符串中只包含大小写英文字母和数字。
输入格式
第一行包含整数 n 和 m,表示字符串长度和询问次数。
第二行包含一个长度为 n 的字符串,字符串中只包含大小写英文字母和数字。
接下来 m 行,每行包含四个整数 l1,r1,l2,r2,表示一次询问所涉及的两个区间。
注意,字符串的位置从 1 开始编号。
输出格式
对于每个询问输出一个结果,如果两个字符串子串完全相同则输出 Yes,否则输出 No。
每个结果占一行。
数据范围
1≤n,m≤105
输入样例:
8 3
aabbaabb
1 3 5 7
1 3 6 8
1 2 1 2
输出样例:
Yes
No
Yes
#include<bits/stdc++.h> using namespace std; typedef unsigned long long ULL; const int N=100010,P=131; string str; int n,m; ULL h[N],p[N]; ULL hashstr(int l,int r) { return h[r]-h[l-1]*p[r-l+1]; } int main() { cin>>n>>m; cin>>str; p[0]=1; for(int i=1;i<=n;i++) { h[i]=h[i-1]*P+str[i-1]; p[i]=p[i-1]*P; } while(m--) { int l,r,ll,rr; cin>>l>>r>>ll>>rr; if(hashstr(l,r)==hashstr(ll,rr)) cout<<"Yes"<<endl; else cout<<"No"<<endl; } return 0; }
2.12 STL
C++ STL简介
vector, 变长数组,倍增的思想 size() 返回元素个数 empty() 返回是否为空 clear() 清空 front()/back() push_back()/pop_back() begin()/end() [] 支持比较运算,按字典序 pair<int, int> first, 第一个元素 second, 第二个元素 支持比较运算,以first为第一关键字,以second为第二关键字(字典序) string,字符串 size()/length() 返回字符串长度 empty() clear() substr(起始下标,(子串长度)) 返回子串 c_str() 返回字符串所在字符数组的起始地址 queue, 队列 size() empty() push() 向队尾插入一个元素 front() 返回队头元素 back() 返回队尾元素 pop() 弹出队头元素 priority_queue, 优先队列,默认是大根堆 size() empty() push() 插入一个元素 top() 返回堆顶元素 pop() 弹出堆顶元素 定义成小根堆的方式:priority_queue<int, vector<int>, greater<int>> q; stack, 栈 size() empty() push() 向栈顶插入一个元素 top() 返回栈顶元素 pop() 弹出栈顶元素 deque, 双端队列 size() empty() clear() front()/back() push_back()/pop_back() push_front()/pop_front() begin()/end() [] set, map, multiset, multimap, 基于平衡二叉树(红黑树),动态维护有序序列 size() empty() clear() begin()/end() ++, -- 返回前驱和后继,时间复杂度 O(logn) set/multiset insert() 插入一个数 find() 查找一个数 count() 返回某一个数的个数 erase() (1) 输入是一个数x,删除所有x O(k + logn) (2) 输入一个迭代器,删除这个迭代器 lower_bound()/upper_bound() lower_bound(x) 返回大于等于x的最小的数的迭代器 upper_bound(x) 返回大于x的最小的数的迭代器 map/multimap insert() 插入的数是一个pair erase() 输入的参数是pair或者迭代器 find() [] 注意multimap不支持此操作。 时间复杂度是 O(logn) lower_bound()/upper_bound() unordered_set, unordered_map, unordered_multiset, unordered_multimap, 哈希表 和上面类似,增删改查的时间复杂度是 O(1) 不支持 lower_bound()/upper_bound(), 迭代器的++,-- bitset, 圧位 bitset<10000> s; ~, &, |, ^ >>, << ==, != [] count() 返回有多少个1 any() 判断是否至少有一个1 none() 判断是否全为0 set() 把所有位置成1 set(k, v) 将第k位变成v reset() 把所有位变成0 flip() 等价于~ flip(k) 把第k位取反