zookeeper分布式锁原理及实现(2)

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,182元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
MSE Nacos/ZooKeeper 企业版试用,1600元额度,限量50份
简介: zookeeper分布式锁原理及实现(2)

介绍下Curator的基本API


  • 使用静态工程方法创建会话


RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3);
        CuratorFramework client = CuratorFrameworkFactory.newClient("127.0.0.1:2181",
                5000, 5000, retryPolicy);


RetryPolicy为重试策略
第一个参数为baseSleepTimeMs初始的sleep时间,用于计算之后的每次重试的sleep时间。
第二个参数为maxRetries,最大重试次数


  • 使用Fluent风格api创建


RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3);
        CuratorFramework client = CuratorFrameworkFactory.builder()
                .connectString("127.0.0.1:2181")
                .sessionTimeoutMs(5000)  // 会话超时时间
                .connectionTimeoutMs(5000) // 连接超时时间
                .retryPolicy(retryPolicy)
                .namespace("base") // 包含隔离名称
                .build();
        client.start();


  • 创建数据节点


lient.create().creatingParentContainersIfNeeded() // 递归创建所需父节点
                .withMode(CreateMode.PERSISTENT) // 创建类型为持久节点
                .forPath("/nodeA", "init".getBytes()); // 目录及内容


  • 删除数据节点


client.delete()
                .guaranteed()  // 强制保证删除
                .deletingChildrenIfNeeded() // 递归删除子节点
                .withVersion(10086) // 指定删除的版本号
                .forPath("/nodeA");


  • 读取数据节点


byte[] bytes = client.getData().forPath("/nodeA");
        System.out.println(new String(bytes));


  • 读stat


Stat stat = new Stat();
        client.getData()
                .storingStatIn(stat)
                .forPath("/nodeA");


  • 修改数据节点


client.setData()
                .withVersion(10086) // 指定版本修改
                .forPath("/nodeA", "data".getBytes());


  • 事务


client.inTransaction().check().forPath("/nodeA")
                .and()
                .create().withMode(CreateMode.EPHEMERAL).forPath("/nodeB", "init".getBytes())
                .and()
                .create().withMode(CreateMode.EPHEMERAL).forPath("/nodeC", "init".getBytes())
                .and()
                .commit();


  • 其他


client.checkExists() // 检查是否存在
                .forPath("/nodeA");
        client.getChildren().forPath("/nodeA"); // 获取子节点的路径


  • 异步回调


Executor executor = Executors.newFixedThreadPool(2);
        client.create()
                .creatingParentsIfNeeded()
                .withMode(CreateMode.EPHEMERAL)
                .inBackground((curatorFramework, curatorEvent) -> {
                    System.out.println(String.format("eventType:%s,resultCode:%s",curatorEvent.getType(),curatorEvent.getResultCode()));
                },executor)
                .forPath("path");


zk分布式实现的代码分析


先说下这个test方法 描述了 获取zk锁的完整流程


image.png


再说下 如何通过访问接口的方式的实现


目录结构


image.png


初始化zk客户端连接


image.png


zk 客户端申请、释放锁实现


image.png


实现了 InitializingBean, DisposableBean接口


image.png


image.png



相关文章
|
2月前
|
消息中间件 分布式计算 资源调度
《聊聊分布式》ZooKeeper与ZAB协议:分布式协调的核心引擎
ZooKeeper是一个开源的分布式协调服务,基于ZAB协议实现数据一致性,提供分布式锁、配置管理、领导者选举等核心功能,具有高可用、强一致和简单易用的特点,广泛应用于Kafka、Hadoop等大型分布式系统中。
|
7月前
|
NoSQL 算法 安全
分布式锁—1.原理算法和使用建议
本文主要探讨了Redis分布式锁的八大问题,包括非原子操作、忘记释放锁、释放其他线程的锁、加锁失败处理、锁重入问题、锁竞争问题、锁超时失效及主从复制问题,并提供了相应的优化措施。接着分析了Redis的RedLock算法,讨论其优缺点以及分布式专家Martin对其的质疑。此外,文章对比了基于Redis和Zookeeper(zk)的分布式锁实现原理,包括获取与释放锁的具体流程。最后总结了两种分布式锁的适用场景及使用建议,指出Redis分布式锁虽有性能优势但模型不够健壮,而zk分布式锁更稳定但部署成本较高。实际应用中需根据业务需求权衡选择。
|
10月前
|
运维 NoSQL 算法
【📕分布式锁通关指南 04】redis分布式锁的细节问题以及RedLock算法原理
本文深入探讨了基于Redis实现分布式锁时遇到的细节问题及解决方案。首先,针对锁续期问题,提出了通过独立服务、获取锁进程自己续期和异步线程三种方式,并详细介绍了如何利用Lua脚本和守护线程实现自动续期。接着,解决了锁阻塞问题,引入了带超时时间的`tryLock`机制,确保在高并发场景下不会无限等待锁。最后,作为知识扩展,讲解了RedLock算法原理及其在实际业务中的局限性。文章强调,在并发量不高的场景中手写分布式锁可行,但推荐使用更成熟的Redisson框架来实现分布式锁,以保证系统的稳定性和可靠性。
562 0
【📕分布式锁通关指南 04】redis分布式锁的细节问题以及RedLock算法原理
|
12月前
|
存储 SpringCloudAlibaba Java
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
|
存储 Dubbo Java
分布式 RPC 底层原理详解,看这篇就够了!
本文详解分布式RPC的底层原理与系统设计,大厂面试高频,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
分布式 RPC 底层原理详解,看这篇就够了!
|
存储 运维 NoSQL
分布式读写锁的奥义:上古世代 ZooKeeper 的进击
本文作者将介绍女娲对社区 ZooKeeper 在分布式读写锁实践细节上的思考,希望帮助大家理解分布式读写锁背后的原理。
319 11
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
660 4
|
分布式计算 NoSQL Java
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
202 2
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
683 0
|
安全 应用服务中间件 API
微服务分布式系统架构之zookeeper与dubbo-2
微服务分布式系统架构之zookeeper与dubbo-2

热门文章

最新文章