HDOJ/HDU 1085 Holding Bin-Laden Captive!(非母函数求解)

简介: HDOJ/HDU 1085 Holding Bin-Laden Captive!(非母函数求解)

Problem Description

We all know that Bin-Laden is a notorious terrorist, and he has disappeared for a long time. But recently, it is reported that he hides in Hang Zhou of China!

“Oh, God! How terrible! ”




Don’t be so afraid, guys. Although he hides in a cave of Hang Zhou, he dares not to go out. Laden is so bored recent years that he fling himself into some math problems, and he said that if anyone can solve his problem, he will give himself up!

Ha-ha! Obviously, Laden is too proud of his intelligence! But, what is his problem?

“Given some Chinese Coins (硬币) (three kinds– 1, 2, 5), and their number is num_1, num_2 and num_5 respectively, please output the minimum value that you cannot pay with given coins.”

You, super ACMer, should solve the problem easily, and don’t forget to take $25000000 from Bush!


Input

Input contains multiple test cases. Each test case contains 3 positive integers num_1, num_2 and num_5 (0<=num_i<=1000). A test case containing 0 0 0 terminates the input and this test case is not to be processed.


Output

Output the minimum positive value that one cannot pay with given coins, one line for one case.


Sample Input

1 1 3

0 0 0


Sample Output

4



题目大意:

给你1,2,5元的硬币数量,求没办法组成的最小的数。


分析:

因为还没学母函数,用了一般的知识求解。

1、当没有一元的硬币时,肯定就是1了。

2、当一元硬币和二元硬币无法组成1-4之间的所有数字时,那么不用考虑五元的硬币,这个时候最小的数字为a+2*b+1。

3、当前面2种情况都满足时,最大的数a+2*b+5*c以内的所有数字肯定都能取到,所以最小数为:a+2*b+5*c+1。


AC代码:

import java.util.Scanner;
public class Main{
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        while(sc.hasNext()){
            int a =sc.nextInt();
            int b=sc.nextInt();
            int c =sc.nextInt();
            if(a==0&&b==0&&c==0){
                break;
            }
            if(a==0){
                System.out.println(1);
            }else if( a+2*b<4 ){
                System.out.println(a+2*b+1);
            }else{
                System.out.println(a+b*2+5*c+1);
            }
        }
    }
}
目录
相关文章
HDOJ 1016 Prime Ring Problem素数环【深搜】
HDOJ 1016 Prime Ring Problem素数环【深搜】
123 0
HDOJ 1016 Prime Ring Problem素数环【深搜】
HDOJ/HDU 1022 Train Problem I(模拟栈)
HDOJ/HDU 1022 Train Problem I(模拟栈)
126 0
HDOJ/HDU 1022 Train Problem I(模拟栈)
HDOJ(HDU) 1898 Sempr == The Best Problem Solver?(水题、、、)
HDOJ(HDU) 1898 Sempr == The Best Problem Solver?(水题、、、)
134 0
HDOJ(HDU) 2309 ICPC Score Totalizer Software(求平均值)
HDOJ(HDU) 2309 ICPC Score Totalizer Software(求平均值)
110 0
|
C语言
HDOJ 1016 Prime Ring Problem素数环【深搜2】
HDOJ 1016 Prime Ring Problem素数环【深搜】
102 0
HDOJ(HDU) 2304 Electrical Outlets(求和、、)
HDOJ(HDU) 2304 Electrical Outlets(求和、、)
113 0
HDOJ/HDU 1372 Knight Moves(经典BFS)
HDOJ/HDU 1372 Knight Moves(经典BFS)
141 0
|
Go
HDOJ(HDU) 1977 Consecutive sum II(推导、、)
HDOJ(HDU) 1977 Consecutive sum II(推导、、)
114 0
|
数据挖掘
HDOJ 1032(POJ 1207) The 3n + 1 problem
HDOJ 1032(POJ 1207) The 3n + 1 problem
136 0
|
算法 C++
HDOJ(HDU) 2109 Fighting for HDU(简单排序比较)
HDOJ(HDU) 2109 Fighting for HDU(简单排序比较)
125 0