深入了解 Eureka 架构原理及实现(五)

简介: 深入了解 Eureka 架构原理及实现

服务注销机制


服务正常停止之前会向注册中心发送注销请求,告诉注册中心“我要下线了”。



微信图片_20220414203224.png


注册中心服务接收到 cancel 请求后:


  1. 删除服务信息,将服务信息从 registry 中删除;


  2. 更新队列,将此事件添加到更新队列中,供 Eureka Client 增量同步服务信息使用。


  3. 清空二级缓存,即 readWriteCacheMap,用于保证数据的一致性。

  4. 更新阈值,供剔除服务使用。

  5. 同步服务信息,将此事件同步至其他的 Eureka Server 节点。


服务正常停止才会发送 Cancel,如果是非正常停止,则不会发送,此服务由 Eureka Server 主动剔除。


服务剔除机制


Eureka Server 提供了服务剔除的机制,用于剔除没有正常下线的服务。


微信图片_20220414203228.png


服务的剔除包括三个步骤,首先判断是否满足服务剔除的条件,然后找出过期的服务,最后执行剔除。


判断是否满足服务剔除的条件


有两种情况可以满足服务剔除的条件:


  1. 关闭了自我保护


  2. 如果开启了自我保护,需要进一步判断是 Eureka Server 出了问题,还是 Eureka Client 出了问题,如果是 Eureka Client 出了问题则进行剔除。


这里比较核心的条件是自我保护机制,Eureka 自我保护机制是为了防止误杀服务而提供的一个机制。


Eureka 的自我保护机制“谦虚”的认为如果大量服务都续约失败,则认为是自己出问题了(如自己断网了),也就不剔除了;


反之,则是 Eureka Client 的问题,需要进行剔除。


自我保护阈值是区分 Eureka Client 还是 Eureka Server 出问题的临界值:如果超出阈值就表示大量服务可用,少量服务不可用,则判定是 Eureka Client 出了问题。


如果未超出阈值就表示大量服务不可用,则判定是 Eureka Server 出了问题


条件 1 中如果关闭了自我保护,则统统认为是 Eureka Client 的问题,把没按时续约的服务都剔除掉(这里有剔除的最大值限制)。


这里比较难理解的是阈值的计算:


  • 自我保护阈值 = 服务总数 * 每分钟续约数 * 自我保护阈值因子。


  • 每分钟续约数 =(60S/ 客户端续约间隔)


最后自我保护阈值的计算公式为:


自我保护阈值 = 服务总数 * (60S/ 客户端续约间隔) * 自我保护阈值因子。

 

举例:如果有 100 个服务,续约间隔是 30S,自我保护阈值 0.85。

自我保护阈值 =100 * 60 / 30 * 0.85 = 170。

如果上一分钟的续约数 =180>170,则说明大量服务可用,是服务问题,进入剔除流程;

如果上一分钟的续约数 =150<170,则说明大量服务不可用,是注册中心自己的问题,进入自我保护模式,不进入剔除流程。


找出过期的服务


遍历所有的服务,判断上次续约时间距离当前时间大于阈值就标记为过期。并将这些过期的服务保存到集合中。


剔除服务


在剔除服务之前先计算剔除的数量,然后遍历过期服务,通过洗牌算法确保每次都公平的选择出要剔除的任务,最后进行剔除。


执行剔除服务后:


  1. 删除服务信息,从 registry 中删除服务。


  2. 更新队列,将当前剔除事件保存到更新队列中。


  3. 清空二级缓存,保证数据的一致性。


服务获取机制


Eureka Client 获取服务有两种方式,全量同步和增量同步。获取流程是根据 Eureka Server 的多层数据结构进行的:


微信图片_20220414203232.png


无论是全量同步还是增量同步,都是先从缓存中获取,如果缓存中没有,则先加载到缓存中,再从缓存中获取。(registry 只保存数据结构,缓存中保存 ready 的服务信息。)


  • 先从一级缓存中获取


       a> 先判断是否开启了一级缓存


      b> 如果开启了则从一级缓存中获取,如果存在则返回,如果没有,则从二级缓存中获取


       c> 如果未开启,则跳过一级缓存,从二级缓存中获取


  • 再从二级缓存中获取

      a> 如果二级缓存中存在,则直接返回;

 

      b> 如果二级缓存中不存在,则先将数据加载到二级缓存中,再从二级缓存中获取。


注意加载时需要判断是增量同步还是全量同步,增量同步从 recentlyChangedQueue 中 load,全量同步从 registry 中 load。

相关文章
|
4月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
1082 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
2月前
|
机器学习/深度学习 自然语言处理 监控
23_Transformer架构详解:从原理到PyTorch实现
Transformer架构自2017年Google发表的论文《Attention Is All You Need》中提出以来,彻底改变了深度学习特别是自然语言处理领域的格局。在短短几年内,Transformer已成为几乎所有现代大型语言模型(LLM)的基础架构,包括BERT、GPT系列、T5等革命性模型。与传统的RNN和LSTM相比,Transformer通过自注意力机制实现了并行化训练,极大提高了模型的训练效率和性能。
|
5月前
|
存储 监控 算法
园区导航系统技术架构实现与原理解构
本文聚焦园区导航场景中室内外定位精度不足、车辆调度路径规划低效、数据孤岛难以支撑决策等技术痛点,从架构设计到技术原理,对该系统从定位到数据中台进行技术拆解。
242 0
园区导航系统技术架构实现与原理解构
|
7月前
|
存储 人工智能 自然语言处理
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
本文深入探讨了混合专家(MoE)架构在大型语言模型中的应用与技术原理。MoE通过稀疏激活机制,在保持模型高效性的同时实现参数规模的大幅扩展,已成为LLM发展的关键趋势。文章分析了MoE的核心组件,包括专家网络与路由机制,并对比了密集与稀疏MoE的特点。同时,详细介绍了Mixtral、Grok、DBRX和DeepSeek等代表性模型的技术特点及创新。MoE不仅解决了传统模型扩展成本高昂的问题,还展现出专业化与适应性强的优势,未来有望推动AI工具更广泛的应用。
4233 4
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
|
6月前
|
存储 消息中间件 canal
zk基础—2.架构原理和使用场景
ZooKeeper(ZK)是一个分布式协调服务,广泛应用于分布式系统中。它提供了分布式锁、元数据管理、Master选举及分布式协调等功能,适用于如Kafka、HDFS、Canal等开源分布式系统。ZK集群采用主从架构,具有顺序一致性、高性能、高可用和高并发等特点。其核心机制包括ZAB协议(保证数据一致性)、Watcher监听回调机制(实现通知功能)、以及基于临时顺序节点的分布式锁实现。ZK适合小规模集群部署,主要用于读多写少的场景。
|
8月前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
2848 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
7月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
263 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
7月前
|
Java 开发者 Spring
Spring框架 - 深度揭秘Spring框架的基础架构与工作原理
所以,当你进入这个Spring的世界,看似一片混乱,但细看之下,你会发现这里有个牢固的结构支撑,一切皆有可能。不论你要建设的是一座宏大的城堡,还是个小巧的花园,只要你的工具箱里有Spring,你就能轻松搞定。
308 9
|
8月前
|
人工智能 自然语言处理 安全
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
CodeAct是一种先进的AI辅助系统范式,深度融合自然语言处理与代码执行能力。通过自定义代码执行代理,开发者可精准控制代码生成、执行及管理流程。本文基于LlamaIndex框架构建CodeAct Agent,解析其技术架构,包括代码执行环境、工作流定义系统、提示工程机制和状态管理系统。同时探讨安全性考量及应用场景,如软件开发、数据科学和教育领域。未来发展方向涵盖更精细的代码生成、多语言支持及更强的安全隔离机制,推动AI辅助编程边界拓展。
469 3
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理