深入了解 Eureka 架构原理及实现(五)

简介: 深入了解 Eureka 架构原理及实现

服务注销机制


服务正常停止之前会向注册中心发送注销请求,告诉注册中心“我要下线了”。



微信图片_20220414203224.png


注册中心服务接收到 cancel 请求后:


  1. 删除服务信息,将服务信息从 registry 中删除;


  2. 更新队列,将此事件添加到更新队列中,供 Eureka Client 增量同步服务信息使用。


  3. 清空二级缓存,即 readWriteCacheMap,用于保证数据的一致性。

  4. 更新阈值,供剔除服务使用。

  5. 同步服务信息,将此事件同步至其他的 Eureka Server 节点。


服务正常停止才会发送 Cancel,如果是非正常停止,则不会发送,此服务由 Eureka Server 主动剔除。


服务剔除机制


Eureka Server 提供了服务剔除的机制,用于剔除没有正常下线的服务。


微信图片_20220414203228.png


服务的剔除包括三个步骤,首先判断是否满足服务剔除的条件,然后找出过期的服务,最后执行剔除。


判断是否满足服务剔除的条件


有两种情况可以满足服务剔除的条件:


  1. 关闭了自我保护


  2. 如果开启了自我保护,需要进一步判断是 Eureka Server 出了问题,还是 Eureka Client 出了问题,如果是 Eureka Client 出了问题则进行剔除。


这里比较核心的条件是自我保护机制,Eureka 自我保护机制是为了防止误杀服务而提供的一个机制。


Eureka 的自我保护机制“谦虚”的认为如果大量服务都续约失败,则认为是自己出问题了(如自己断网了),也就不剔除了;


反之,则是 Eureka Client 的问题,需要进行剔除。


自我保护阈值是区分 Eureka Client 还是 Eureka Server 出问题的临界值:如果超出阈值就表示大量服务可用,少量服务不可用,则判定是 Eureka Client 出了问题。


如果未超出阈值就表示大量服务不可用,则判定是 Eureka Server 出了问题


条件 1 中如果关闭了自我保护,则统统认为是 Eureka Client 的问题,把没按时续约的服务都剔除掉(这里有剔除的最大值限制)。


这里比较难理解的是阈值的计算:


  • 自我保护阈值 = 服务总数 * 每分钟续约数 * 自我保护阈值因子。


  • 每分钟续约数 =(60S/ 客户端续约间隔)


最后自我保护阈值的计算公式为:


自我保护阈值 = 服务总数 * (60S/ 客户端续约间隔) * 自我保护阈值因子。

 

举例:如果有 100 个服务,续约间隔是 30S,自我保护阈值 0.85。

自我保护阈值 =100 * 60 / 30 * 0.85 = 170。

如果上一分钟的续约数 =180>170,则说明大量服务可用,是服务问题,进入剔除流程;

如果上一分钟的续约数 =150<170,则说明大量服务不可用,是注册中心自己的问题,进入自我保护模式,不进入剔除流程。


找出过期的服务


遍历所有的服务,判断上次续约时间距离当前时间大于阈值就标记为过期。并将这些过期的服务保存到集合中。


剔除服务


在剔除服务之前先计算剔除的数量,然后遍历过期服务,通过洗牌算法确保每次都公平的选择出要剔除的任务,最后进行剔除。


执行剔除服务后:


  1. 删除服务信息,从 registry 中删除服务。


  2. 更新队列,将当前剔除事件保存到更新队列中。


  3. 清空二级缓存,保证数据的一致性。


服务获取机制


Eureka Client 获取服务有两种方式,全量同步和增量同步。获取流程是根据 Eureka Server 的多层数据结构进行的:


微信图片_20220414203232.png


无论是全量同步还是增量同步,都是先从缓存中获取,如果缓存中没有,则先加载到缓存中,再从缓存中获取。(registry 只保存数据结构,缓存中保存 ready 的服务信息。)


  • 先从一级缓存中获取


       a> 先判断是否开启了一级缓存


      b> 如果开启了则从一级缓存中获取,如果存在则返回,如果没有,则从二级缓存中获取


       c> 如果未开启,则跳过一级缓存,从二级缓存中获取


  • 再从二级缓存中获取

      a> 如果二级缓存中存在,则直接返回;

 

      b> 如果二级缓存中不存在,则先将数据加载到二级缓存中,再从二级缓存中获取。


注意加载时需要判断是增量同步还是全量同步,增量同步从 recentlyChangedQueue 中 load,全量同步从 registry 中 load。

相关文章
|
1月前
|
存储 搜索推荐 数据挖掘
ElasticSearch架构介绍及原理解析
ElasticSearch架构介绍及原理解析
92 0
|
1月前
|
存储 运维 负载均衡
MFS详解(二)——MFS原理和架构
MFS详解(二)——MFS原理和架构
30 0
|
2月前
|
架构师 安全 Java
资深架构师带你解析Synchronize关键字原理
众所周知 Synchronize 关键字是解决并发问题常用解决方案,有以下三种使用方式:
28 0
|
1月前
|
存储 缓存 运维
ISCSI详解(三)——ISCSI原理和架构
ISCSI详解(三)——ISCSI原理和架构
44 2
|
21天前
|
设计模式 安全 Java
【分布式技术专题】「Tomcat技术专题」 探索Tomcat技术架构设计模式的奥秘(Server和Service组件原理分析)
【分布式技术专题】「Tomcat技术专题」 探索Tomcat技术架构设计模式的奥秘(Server和Service组件原理分析)
23 0
|
21天前
|
存储 Java 应用服务中间件
【分布式技术专题】「架构实践于案例分析」盘点互联网应用服务中常用分布式事务(刚性事务和柔性事务)的原理和方案
【分布式技术专题】「架构实践于案例分析」盘点互联网应用服务中常用分布式事务(刚性事务和柔性事务)的原理和方案
42 0
|
1月前
|
SpringCloudAlibaba 负载均衡 Java
【Springcloud Alibaba微服务分布式架构 | Spring Cloud】之学习笔记(三)Eureka服务注册中心
【Springcloud Alibaba微服务分布式架构 | Spring Cloud】之学习笔记(三)Eureka服务注册中心
44 1
|
1月前
|
消息中间件 存储 SQL
Flume【基础知识 01】简介 + 基本架构及核心概念 + 架构模式 + Agent内部原理 + 配置格式(一篇即可入门Flume)
【2月更文挑战第18天】Flume【基础知识 01】简介 + 基本架构及核心概念 + 架构模式 + Agent内部原理 + 配置格式(一篇即可入门Flume)
447 0
|
1月前
|
缓存 监控 安全
Istio架构及工作原理
【2月更文挑战第17天】从 Istio 的设计和实现原理可以看出,它是采用模块化设计,并且各个模块之间高度解耦,Proxy 专注于负责服务之间的通信,Pilot 专注于流量控制,Mixer 专注于策略控制以及监控日志功能,而 Citadel 专注于安全。
|
1月前
|
存储 负载均衡 Java
【Spring底层原理高级进阶】微服务 Spring Cloud 的注册发现机制:Eureka 的架构设计、服务注册与发现的实现原理,深入掌握 Ribbon 和 Feign 的用法 ️
【Spring底层原理高级进阶】微服务 Spring Cloud 的注册发现机制:Eureka 的架构设计、服务注册与发现的实现原理,深入掌握 Ribbon 和 Feign 的用法 ️