上一篇文章介绍了 HashMap 源码,反响不错,也有很多同学发表了自己的观点,这次又来了,这次是 ConcurrentHashMap
了,作为线程安全的HashMap ,它的使用频率也是很高。那么它的存储结构和实现原理是怎么样的呢?
1. ConcurrentHashMap 1.7
1. 存储结构
Java 7 ConcurrentHashMap 存储结构
Java 7 中 ConcurrentHashMap 的存储结构如上图,ConcurrnetHashMap 由很多个 Segment 组合,而每一个 Segment 是一个类似于 HashMap 的结构,所以每一个 HashMap 的内部可以进行扩容。但是 Segment 的个数一旦初始化就不能改变,默认 Segment 的个数是 16 个,你也可以认为 ConcurrentHashMap 默认支持最多 16 个线程并发。
2. 初始化
通过 ConcurrentHashMap 的无参构造探寻 ConcurrentHashMap 的初始化流程。
/** * Creates a new, empty map with a default initial capacity (16), * load factor (0.75) and concurrencyLevel (16). */ public ConcurrentHashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); }
无参构造中调用了有参构造,传入了三个参数的默认值,他们的值是。
/** * 默认初始化容量 */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * 默认负载因子 */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * 默认并发级别 */ static final int DEFAULT_CONCURRENCY_LEVEL = 16;
接着看下这个有参构造函数的内部实现逻辑。
@SuppressWarnings("unchecked") public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) { // 参数校验 if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); // 校验并发级别大小,大于 1<<16,重置为 65536 if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments // 2的多少次方 int sshift = 0; int ssize = 1; // 这个循环可以找到 concurrencyLevel 之上最近的 2的次方值 while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } // 记录段偏移量 this.segmentShift = 32 - sshift; // 记录段掩码 this.segmentMask = ssize - 1; // 设置容量 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; // c = 容量 / ssize ,默认 16 / 16 = 1,这里是计算每个 Segment 中的类似于 HashMap 的容量 int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; int cap = MIN_SEGMENT_TABLE_CAPACITY; //Segment 中的类似于 HashMap 的容量至少是2或者2的倍数 while (cap < c) cap <<= 1; // create segments and segments[0] // 创建 Segment 数组,设置 segments[0] Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor), (HashEntry<K,V>[])new HashEntry[cap]); Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize]; UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0] this.segments = ss; }
总结一下在 Java 7 中 ConcurrnetHashMap 的初始化逻辑。
- 必要参数校验。
- 校验并发级别 concurrencyLevel 大小,如果大于最大值,重置为最大值。无惨构造默认值是 16.
- 寻找并发级别 concurrencyLevel 之上最近的 2 的幂次方值,作为初始化容量大小,默认是 16。
- 记录 segmentShift 偏移量,这个值为【容量 = 2 的N次方】中的 N,在后面 Put 时计算位置时会用到。默认是 32 - sshift = 28.
- 记录 segmentMask,默认是 ssize - 1 = 16 -1 = 15.
- 初始化 segments[0],默认大小为 2,负载因子 0.75,扩容阀值是 2*0.75=1.5,插入第二个值时才会进行扩容。
3. put
接着上面的初始化参数继续查看 put 方法源码。
/** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. * * <p> The value can be retrieved by calling the <tt>get</tt> method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt> * @throws NullPointerException if the specified key or value is null */ public V put(K key, V value) { Segment<K,V> s; if (value == null) throw new NullPointerException(); int hash = hash(key); // hash 值无符号右移 28位(初始化时获得),然后与 segmentMask=15 做与运算 // 其实也就是把高4位与segmentMask(1111)做与运算 int j = (hash >>> segmentShift) & segmentMask; if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment // 如果查找到的 Segment 为空,初始化 s = ensureSegment(j); return s.put(key, hash, value, false); } /** * Returns the segment for the given index, creating it and * recording in segment table (via CAS) if not already present. * * @param k the index * @return the segment */ @SuppressWarnings("unchecked") private Segment<K,V> ensureSegment(int k) { final Segment<K,V>[] ss = this.segments; long u = (k << SSHIFT) + SBASE; // raw offset Segment<K,V> seg; // 判断 u 位置的 Segment 是否为null if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { Segment<K,V> proto = ss[0]; // use segment 0 as prototype // 获取0号 segment 里的 HashEntry<K,V> 初始化长度 int cap = proto.table.length; // 获取0号 segment 里的 hash 表里的扩容负载因子,所有的 segment 的 loadFactor 是相同的 float lf = proto.loadFactor; // 计算扩容阀值 int threshold = (int)(cap * lf); // 创建一个 cap 容量的 HashEntry 数组 HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap]; if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { // recheck // 再次检查 u 位置的 Segment 是否为null,因为这时可能有其他线程进行了操作 Segment<K,V> s = new Segment<K,V>(lf, threshold, tab); // 自旋检查 u 位置的 Segment 是否为null while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { // 使用CAS 赋值,只会成功一次 if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s)) break; } } } return seg; }
上面的源码分析了 ConcurrentHashMap 在 put 一个数据时的处理流程,下面梳理下具体流程。
- 计算要 put 的 key 的位置,获取指定位置的 Segment。
- 如果指定位置的 Segment 为空,则初始化这个 Segment.
初始化 Segment 流程:
- 检查计算得到的位置的 Segment 是否为null.
- 为 null 继续初始化,使用 Segment[0] 的容量和负载因子创建一个 HashEntry 数组。
- 再次检查计算得到的指定位置的 Segment 是否为null.
- 使用创建的 HashEntry 数组初始化这个 Segment.
- 自旋判断计算得到的指定位置的 Segment 是否为null,使用 CAS 在这个位置赋值为 Segment.
- Segment.put 插入 key,value 值。
上面探究了获取 Segment 段和初始化 Segment 段的操作。最后一行的 Segment 的 put 方法还没有查看,继续分析。
final V put(K key, int hash, V value, boolean onlyIfAbsent) { // 获取 ReentrantLock 独占锁,获取不到,scanAndLockForPut 获取。 HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value); V oldValue; try { HashEntry<K,V>[] tab = table; // 计算要put的数据位置 int index = (tab.length - 1) & hash; // CAS 获取 index 坐标的值 HashEntry<K,V> first = entryAt(tab, index); for (HashEntry<K,V> e = first;;) { if (e != null) { // 检查是否 key 已经存在,如果存在,则遍历链表寻找位置,找到后替换 value K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { oldValue = e.value; if (!onlyIfAbsent) { e.value = value; ++modCount; } break; } e = e.next; } else { // first 有值没说明 index 位置已经有值了,有冲突,链表头插法。 if (node != null) node.setNext(first); else node = new HashEntry<K,V>(hash, key, value, first); int c = count + 1; // 容量大于扩容阀值,小于最大容量,进行扩容 if (c > threshold && tab.length < MAXIMUM_CAPACITY) rehash(node); else // index 位置赋值 node,node 可能是一个元素,也可能是一个链表的表头 setEntryAt(tab, index, node); ++modCount; count = c; oldValue = null; break; } } } finally { unlock(); } return oldValue; }
由于 Segment 继承了 ReentrantLock,所以 Segment 内部可以很方便的获取锁,put 流程就用到了这个功能。
- tryLock() 获取锁,获取不到使用
scanAndLockForPut
方法继续获取。
- 计算 put 的数据要放入的 index 位置,然后获取这个位置上的 HashEntry 。
- 遍历 put 新元素,为什么要遍历?因为这里获取的 HashEntry 可能是一个空元素,也可能是链表已存在,所以要区别对待。
如果这个位置上的 HashEntry 不存在:
如果这个位置上的 HashEntry 存在:
- 如果当前容量大于扩容阀值,小于最大容量,进行扩容。
- 直接链表头插法插入。
- 判断链表当前元素 Key 和 hash 值是否和要 put 的 key 和 hash 值一致。一致则替换值
- 不一致,获取链表下一个节点,直到发现相同进行值替换,或者链表表里完毕没有相同的。
- 如果当前容量大于扩容阀值,小于最大容量,进行扩容。
- 直接头插法插入。
- 如果要插入的位置之前已经存在,替换后返回旧值,否则返回 null.
这里面的第一步中的 scanAndLockForPut 操作这里没有介绍,这个方法做的操作就是不断的自旋 tryLock()
获取锁。当自旋次数大于指定次数时,使用 lock()
阻塞获取锁。在自旋时顺表获取下 hash 位置的 HashEntry。
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) { HashEntry<K,V> first = entryForHash(this, hash); HashEntry<K,V> e = first; HashEntry<K,V> node = null; int retries = -1; // negative while locating node // 自旋获取锁 while (!tryLock()) { HashEntry<K,V> f; // to recheck first below if (retries < 0) { if (e == null) { if (node == null) // speculatively create node node = new HashEntry<K,V>(hash, key, value, null); retries = 0; } else if (key.equals(e.key)) retries = 0; else e = e.next; } else if (++retries > MAX_SCAN_RETRIES) { // 自旋达到指定次数后,阻塞等到只到获取到锁 lock(); break; } else if ((retries & 1) == 0 && (f = entryForHash(this, hash)) != first) { e = first = f; // re-traverse if entry changed retries = -1; } } return node; }
4. 扩容 rehash
ConcurrentHashMap 的扩容只会扩容到原来的两倍。老数组里的数据移动到新的数组时,位置要么不变,要么变为 index+ oldSize,参数里的 node 会在扩容之后使用链表头插法插入到指定位置。
private void rehash(HashEntry<K,V> node) { HashEntry<K,V>[] oldTable = table; // 老容量 int oldCapacity = oldTable.length; // 新容量,扩大两倍 int newCapacity = oldCapacity << 1; // 新的扩容阀值 threshold = (int)(newCapacity * loadFactor); // 创建新的数组 HashEntry<K,V>[] newTable = (HashEntry<K,V>[]) new HashEntry[newCapacity]; // 新的掩码,默认2扩容后是4,-1是3,二进制就是11。 int sizeMask = newCapacity - 1; for (int i = 0; i < oldCapacity ; i++) { // 遍历老数组 HashEntry<K,V> e = oldTable[i]; if (e != null) { HashEntry<K,V> next = e.next; // 计算新的位置,新的位置只可能是不便或者是老的位置+老的容量。 int idx = e.hash & sizeMask; if (next == null) // Single node on list // 如果当前位置还不是链表,只是一个元素,直接赋值 newTable[idx] = e; else { // Reuse consecutive sequence at same slot // 如果是链表了 HashEntry<K,V> lastRun = e; int lastIdx = idx; // 新的位置只可能是不便或者是老的位置+老的容量。 // 遍历结束后,lastRun 后面的元素位置都是相同的 for (HashEntry<K,V> last = next; last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } // ,lastRun 后面的元素位置都是相同的,直接作为链表赋值到新位置。 newTable[lastIdx] = lastRun; // Clone remaining nodes for (HashEntry<K,V> p = e; p != lastRun; p = p.next) { // 遍历剩余元素,头插法到指定 k 位置。 V v = p.value; int h = p.hash; int k = h & sizeMask; HashEntry<K,V> n = newTable[k]; newTable[k] = new HashEntry<K,V>(h, p.key, v, n); } } } } // 头插法插入新的节点 int nodeIndex = node.hash & sizeMask; // add the new node node.setNext(newTable[nodeIndex]); newTable[nodeIndex] = node; table = newTable; }
有些同学可能会对最后的两个 for 循环有疑惑,这里第一个 for 是为了寻找这样一个节点,这个节点后面的所有 next 节点的新位置都是相同的。然后把这个作为一个链表赋值到新位置。第二个 for 循环是为了把剩余的元素通过头插法插入到指定位置链表。这样实现的原因可能是基于概率统计,有深入研究的同学可以发表下意见。
5. get
到这里就很简单了,get 方法只需要两步即可。
- 计算得到 key 的存放位置。
- 遍历指定位置查找相同 key 的 value 值。
public V get(Object key) { Segment<K,V> s; // manually integrate access methods to reduce overhead HashEntry<K,V>[] tab; int h = hash(key); long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; // 计算得到 key 的存放位置 if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) { for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) { // 如果是链表,遍历查找到相同 key 的 value。 K k; if ((k = e.key) == key || (e.hash == h && key.equals(k))) return e.value; } } return null; }