使用 scikit-learn 玩转机器学习——模型评价(下)

简介: 对于分类模型来说,我们一般会用模型的准确率来进行模型的评价,模型的准确率是用预测正确的样本数除以模型的总数。如果一个模型的准确率达到了95%,那么在我们的印象中,是不是这个模型表现的还挺不错的,那如果达到了99%呢,岂不是更好?

精准率是TP值与TP值和FP值的和的比值,在上例中表示预测对的中奖人数占按预测应该中奖的人数的比值,表示如下:



召回率是TP值与TP值和FN值的和的比值,在上例中表示预测对的中奖人数占实际中奖人数的比率,表示如下:



然后我们可以得到我们所据上述例子中的混淆矩阵:

31.jpg根据精准率和召回率的定义可得, 出现除0情况而无意义,,召回率为0,根据召回率的定义也可知,召回率表示的是对于特定的目标群,预测正确的比率。完美的解决了准确率在偏斜数据中不作为的问题。


在不同的应用场景下,我们通常会关注不同的指标,因为有些时候精准率更为重要,有些时候召回率更为重要。为了同时权衡这两个指标的重要性,就出现了 F1 Score,表达式如下:



由上式我们可以看出,F1 Score 其实就是精准率与召回率的调和平均值,因为召回率和精准率都大于0,由极限的性质可知,只有精准率和召回率都打的时候,F1 Score 才会比较大。


说到 ROC 曲线(Receiver Operating Characteristic, 受试者工作特性曲线),就得从 TPR 和 FPR,其分别表示 被正确预测的目标类别占目标类别的比率,和被错误的预测为目标类表占非目标类别的比率。其分别对应的表格和表达式如下:


32.jpg33.jpg


OC 曲线源于二战中用于敌机检测的雷达信号分析技术,后来才被引入机器学习领域。在进行机器学习模型的比较时,如果一个模型的 ROC 曲线被另一个模型的曲线完全包住,则可断言后者的性能优于前者;若两个模型的 ROC 曲线发生交叉,则在一般情况下很难判定2个模型孰优孰劣,这时,一种较为合理的评比标准便是比较这两个 ROC 曲线之下的面积,即 AUC(Area under curve)。


接下来我们用代码来具体的实现下相关的评判标准和判别式。


引入必要的包 -> 调用数据集 -> 使数据集中不同类别数量偏斜 -> 分离训练、测试数据集 -> 实例化一个逻辑回归模型 -> 预测并求出模型准确率

34.jpg


为增加我们对上述有关术语和评判标准的感性认识,我们具体实现了下一些函数,如下:

35.jpg36.jpg


当然了,如果每次使用精准率和召回率时都要自己亲手撸出来可能骚微还是有一些的麻烦,不过 贴心的 scikit-learn 找就为我们准备好了一切,在 metrics 中封装了所有我们在上述实现的度量,如下是调用演示:

37.jpg

对于机器学习模型的性能而言,不光是各样本的特征系数,而且阈值(或称之为截距)的取法对其也有着重要的影响。如下代码是用于绘制精准率与召回率和阈值取值的关系,并绘出其图形:

38.jpg


PR 曲线对研究机器学习模型也有着重要的作用,我们也可以从 scikit-learn 中调用相关的函数来绘制 PR 曲线,如下:

39.jpg


绘制出 ROC 曲线:

40.jpg

ROC 曲线和 PR 曲线有着很强的相似性,因为这两图的各自的两个指标的取值范围都是0到1,因此都可以用曲线与 y=0 围成的面积可以用来表征模型的优劣,且用面积作为指标来衡量模型优劣对指标某个部分的具体变化不敏感,稳定性更强。关于以上所有概念更为严谨和全面的定义和证明请参考周大佬的西瓜书。

相关文章
|
11天前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
25 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
14天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
110 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
3天前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
35 18
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
2月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
1月前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 数据采集 数据处理
Scikit-learn Pipeline完全指南:高效构建机器学习工作流
Scikit-learn管道是构建高效、鲁棒、可复用的机器学习工作流程的利器。通过掌握管道的使用,我们可以轻松地完成从数据预处理到模型训练、评估和部署的全流程,极大地提高工作效率。
48 2
Scikit-learn Pipeline完全指南:高效构建机器学习工作流
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
55 12
|
2月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
89 8
|
2月前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
83 6