【Android 逆向】ART 函数抽取加壳 ( ART 下的函数抽取恢复时机 | 禁用 dex2oat 机制源码分析 )(二)

简介: 【Android 逆向】ART 函数抽取加壳 ( ART 下的函数抽取恢复时机 | 禁用 dex2oat 机制源码分析 )(二)

2、oat_file_assistant.cc#Dex2Oat 源码分析


在 /art/runtime/oat_file_assistant.cc#Dex2Oat 函数中 , 调用了 /art/runtime/exec_utils.cc#Exec 函数 ;


bool OatFileAssistant::Dex2Oat(const std::vector<std::string>& args,
                               std::string* error_msg) {
  Runtime* runtime = Runtime::Current();
  std::string image_location = ImageLocation();
  if (image_location.empty()) {
    *error_msg = "No image location found for Dex2Oat.";
    return false;
  }
  std::vector<std::string> argv;
  argv.push_back(runtime->GetCompilerExecutable());
  argv.push_back("--runtime-arg");
  argv.push_back("-classpath");
  argv.push_back("--runtime-arg");
  std::string class_path = runtime->GetClassPathString();
  if (class_path == "") {
    class_path = OatFile::kSpecialSharedLibrary;
  }
  argv.push_back(class_path);
  if (runtime->IsJavaDebuggable()) {
    argv.push_back("--debuggable");
  }
  runtime->AddCurrentRuntimeFeaturesAsDex2OatArguments(&argv);
  if (!runtime->IsVerificationEnabled()) {
    argv.push_back("--compiler-filter=verify-none");
  }
  if (runtime->MustRelocateIfPossible()) {
    argv.push_back("--runtime-arg");
    argv.push_back("-Xrelocate");
  } else {
    argv.push_back("--runtime-arg");
    argv.push_back("-Xnorelocate");
  }
  if (!kIsTargetBuild) {
    argv.push_back("--host");
  }
  argv.push_back("--boot-image=" + image_location);
  std::vector<std::string> compiler_options = runtime->GetCompilerOptions();
  argv.insert(argv.end(), compiler_options.begin(), compiler_options.end());
  argv.insert(argv.end(), args.begin(), args.end());
  std::string command_line(android::base::Join(argv, ' '));
  // ★ 核心跳转
  return Exec(argv, error_msg);
}


源码路径 : /art/runtime/oat_file_assistant.cc#Dex2Oat



3、exec_utils.cc#Exec 源码分析


在 /art/runtime/exec_utils.cc#Exec 函数中 , 调用了 /art/runtime/exec_utils.cc#ExecAndReturnCode 函数 ;


bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg) {
  // ★ 核心跳转
  int status = ExecAndReturnCode(arg_vector, error_msg);
  if (status != 0) {
    const std::string command_line(android::base::Join(arg_vector, ' '));
    *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status",
                              command_line.c_str());
    return false;
  }
  return true;
}


源码路径 : /art/runtime/exec_utils.cc#Exec



4、exec_utils.cc#ExecAndReturnCode 源码分析


在 /art/runtime/exec_utils.cc#ExecAndReturnCode 函数中 , 调用了


execve(program, &args[0], envp);


函数 , 通过 hook 该 execve 函数 , 可以禁用 dex2oat ;


int ExecAndReturnCode(std::vector<std::string>& arg_vector, std::string* error_msg) {
  const std::string command_line(android::base::Join(arg_vector, ' '));
  CHECK_GE(arg_vector.size(), 1U) << command_line;
  // 将参数转换为字符指针。
  const char* program = arg_vector[0].c_str();
  std::vector<char*> args;
  for (size_t i = 0; i < arg_vector.size(); ++i) {
    const std::string& arg = arg_vector[i];
    char* arg_str = const_cast<char*>(arg.c_str());
    CHECK(arg_str != nullptr) << i;
    args.push_back(arg_str);
  }
  args.push_back(nullptr);
  // fork and exec
  pid_t pid = fork();
  if (pid == 0) {
    // fork和exec之间不允许分配
    // 更改流程组,这样我们就不会被ProcessManager收获
    setpgid(0, 0);
    // (b/30160149): 保护子进程不受对LD_LIBRARY_路径等的修改的影响。
    // 使用从创建运行时开始的环境快照。
    char** envp = (Runtime::Current() == nullptr) ? nullptr : Runtime::Current()->GetEnvSnapshot();
    if (envp == nullptr) {
      execv(program, &args[0]);
    } else {
      execve(program, &args[0], envp);
    }
    PLOG(ERROR) << "Failed to execve(" << command_line << ")";
    // _exit to avoid atexit handlers in child.
    _exit(1);
  } else {
    if (pid == -1) {
      *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s",
                                command_line.c_str(), strerror(errno));
      return -1;
    }
    // 等待子进程完成
    int status = -1;
    pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
    if (got_pid != pid) {
      *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: "
                                "wanted %d, got %d: %s",
                                command_line.c_str(), pid, got_pid, strerror(errno));
      return -1;
    }
    if (WIFEXITED(status)) {
      return WEXITSTATUS(status);
    }
    return -1;
  }
}


源码路径 : /art/runtime/exec_utils.cc#ExecAndReturnCode


目录
相关文章
|
10天前
|
算法 Linux 调度
深入探索安卓系统的多任务处理机制
【10月更文挑战第21天】 本文旨在为读者提供一个关于Android系统多任务处理机制的全面解析。我们将从Android操作系统的核心架构出发,探讨其如何管理多个应用程序的同时运行,包括进程调度、内存管理和电量优化等方面。通过深入分析,本文揭示了Android在处理多任务时所面临的挑战以及它如何通过创新的解决方案来提高用户体验和设备性能。
20 1
|
15天前
|
存储 安全 Android开发
探索Android与iOS的隐私保护机制
在数字化时代,移动设备已成为我们生活的一部分,而隐私安全是用户最为关注的问题之一。本文将深入探讨Android和iOS两大主流操作系统在隐私保护方面的策略和实现方式,分析它们各自的优势和不足,以及如何更好地保护用户的隐私。
|
2月前
|
消息中间件 存储 Java
Android消息处理机制(Handler+Looper+Message+MessageQueue)
Android消息处理机制(Handler+Looper+Message+MessageQueue)
42 2
|
5月前
|
存储 Java 编译器
🔍深入Android底层,揭秘JVM与ART的奥秘,性能优化新视角!🔬
【7月更文挑战第28天】在Android开发中,掌握底层机制至关重要。从Dalvik到ART, Android通过采用AOT编译在应用安装时预编译字节码至机器码,显著提升了执行效率。ART还优化了垃圾回收,减少内存占用及停顿。为了优化性能,可减少DEX文件数量、优化代码结构利用内联等技术、合理管理内存避免泄漏,并使用ART提供的调试工具。
122 7
|
2月前
|
消息中间件 存储 Java
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
|
2月前
|
消息中间件 存储 Java
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
54 1
|
2月前
|
存储 安全 数据安全/隐私保护
探索安卓与iOS的隐私保护机制####
【10月更文挑战第15天】 本文深入剖析了安卓和iOS两大操作系统在隐私保护方面的策略与技术实现,旨在揭示两者如何通过不同的技术手段来保障用户数据的安全与隐私。文章将逐一探讨各自的隐私控制功能、加密措施以及用户权限管理,为读者提供一个全面而深入的理解。 ####
61 1
|
2月前
|
消息中间件 存储 Java
Android消息处理机制(Handler+Looper+Message+MessageQueue)
Android消息处理机制(Handler+Looper+Message+MessageQueue)
49 2
|
3月前
|
存储 缓存 Android开发
Android RecyclerView 缓存机制深度解析与面试题
本文首发于公众号“AntDream”,详细解析了 `RecyclerView` 的缓存机制,包括多级缓存的原理与流程,并提供了常见面试题及答案。通过本文,你将深入了解 `RecyclerView` 的高性能秘诀,提升列表和网格的开发技能。
75 8
|
3月前
|
存储 Java 编译器
🔍深入Android底层,揭秘JVM与ART的奥秘,性能优化新视角!🔬
【9月更文挑战第12天】在Android开发领域,深入了解其底层机制对提升应用性能至关重要。本文详述了从早期Dalvik虚拟机到现今Android Runtime(ART)的演变过程,揭示了ART通过预编译技术实现更快启动速度和更高执行效率的奥秘。文中还介绍了ART的编译器与运行时环境,并提出了减少DEX文件数量、优化代码结构及合理管理内存等多种性能优化策略。通过掌握这些知识,开发者可以从全新的角度提升应用性能。
68 11