相关性和因果性:周扒皮原来是大数据应用的先驱者

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:



在大数据时代,相关关系似乎替代了因果关系。然而世界具有复杂性,大数据时代世界似乎被数据统治,是混沌的。


相关关系是指当一个数据变化时,另一个数据也可能随之变化,不论是这两个数据也没有必然联系。相关关系有可能是正相关也有可能是负相关,有可能是强相关也有可能是弱相关。


因果关系是指当一个作为原因的数据变化时,另一个作为结果的数据在一定程度发生变化,这两个数据存在着必然联系。因果关系可能是线性关系,也可能是非线性关系。


大数据来了,相关性的凸显,使我们看到了以前不曾注意的联系,掌握了以前很难理解的复杂系统。通过相关性的研究,可以帮助企业赚钱,帮助政府决策就够了,不要讲究“为什么”,至于因果关系就让科学家们慢慢琢磨去吧。


相关性倒不是什么新鲜话题,于是乎我想起了地主周扒皮。上世纪四十年代,中国农村某地有个地主叫周扒皮,他雇佣了几个长工为他种地,周扒皮不可能懂得相关关系和因果关系,但他很狡猾,他悟出了两个现象之间的联系,公鸡一叫,太阳不久就会升起。旧时中国农民有个习惯,日出而作,日落而息。于是,每天半夜他到鸡窝旁学鸡叫,引得鸡窝里的公鸡一起打鸣,然后周扒皮到长工屋大喊:鸡都叫了,快下地干活。


显然,公鸡叫,太阳升这两个事儿之间并没有什么因果关系,他们之间仅仅是相关关系,因为不能认为公鸡叫是太阳升的原因,太阳升是公鸡叫的结果。如果把天下的公鸡都杀了,太阳从此不升起来了,因果关系才能得到验证。但周扒皮利用相关关系延长了长工的劳动时间,达到了剥削的目的。




古时候没有天气预报,人们往往根据蛙鸣预测有没有雨,但雨水不应是蛤蟆叫出来的。地震前动物往往有异常表现,但地震不应是阿猫阿狗闹出来的。但是了解这些现象之间的相关关系往往有用处。


有些学者用世界的复杂性解释大数据复杂性,认为这个世界是混乱的,世界上大多数发生的事是碰巧出现的,完全不受定律和因果性的支配,但这个世界又是数据的,混乱性只有使用大数据才能进行说明。这些观点又用蝴蝶效应进行了说明。据说地球一端更多一只蝴蝶煽动了一下翅膀能引起地球另一端一场暴风雨,并将这一现象引人复杂性科学,是指在一个动力系统中,初始条件下微小的变化能带动整个系统长期巨大的连锁反映。我们不怀疑复杂适应系统理论的科学性,但实在无法验证中国哪一场暴风雨是由美国的哪一只蝴蝶的翅膀引发的,更无法分析其相关性。


科学研究的现象都是可重复的,重复考研在实验室中复制,也可以在现实世界中产生。蝴蝶翅膀和暴风雨的关系显然不能在实验室中实验,但我们也无法在现实世界中取得它们相关性的数据。我奶奶和我讲过她父亲的故事,有一天我奶奶的父亲在祖坟里看到了一只狐狸,第二年我奶奶的父亲便娶了一个美如妖的媳妇,就是我奶奶的母亲,但这种事情以后再也没有发生过,不能重复。千年一现的事物只能是传说,不是科学研究的对象。实验室中的实验结果每一次都会有差异,我们通过统计平均,在变化中研究规律,因而千年不变的事物也不是科学研究的对象。现实世界产生的大数据在一定条件下是可以重复和多变的,给科学研究提供了基本条件,也对科学研究提出了新的挑战。


几千年来,探讨事物之间的因果关系是理、工、农、医、文几乎所有科学研究的重要目的。相关性和因果性是哲学问题,哲学家、数学家、统计学家、物理学家、医学家、经济学家大都将寻找自身研究领域中的因果关系当做一生的追求。古希腊哲学家说:“我宁肯找到一个因果关系的说明,不愿获得一个波斯王位。”千百年,虽然哲学家思辩方式已深入人心,老百姓还是相信事出有因,宗教人士宣传因果报应。


在研究相关关系和因果关系方面,统计学做出了巨大贡献。统计学提出了相关系数,通过计算相关系数判断事物之间的相关关系,对相关系数教学统计检验,若通过检验,证明事物之间的相关程度高,便可以进一步做回归分析。在计算相关系数时,首先要通过理论研究和定性分析筛选变量,对有内在联系的数据做相关分析。与大数据思维不同,统计学认为公鸡叫与太阳升、蛙鸣与下雨,它们之间没有内在联系,即无因果关系,属于虚假相关,尽管相关系数可能很高,也没有做回归分析的必要了。


在回归分析中,设xi为自变量,设yi为因变量,统计学的研究几乎穷尽了因果关系的所有可能。对一因一果的现象,可以建立一元回归模型;对多因一果的现象,可以建立多元回归模型;对一因多果的现象,可以建立路径分析等模型;对多因多果的现象,可以建立联立方程等模型。


显然,回归模型比相关系数进了一步,它可以解释数据之间作用机制和作用的大小。但回归模型即使通过了各种统计检验,也可能只在一定程度上说明事物之间的因果关系。模型的自变量不一定是原因,因变量不一定是结果。Xi与yi之间的因果关系是否成立,还要由统计学所应用领域的专家来判断,如经济学家、管理学家、生物学家、医学家等,并大量的实践得到检验。统计模型只能说包含真正因果关系的可能性较大,二真值在哪里?上帝知道。


大数据可理解为大而复杂的数据,具有异母体、噪音累积、虚假相关、内生性、时变性等,我们几乎被数据包围。在这种数据环境下,寻找数据之间因果关系非常困难,也有观点认为在大数据时代,探索因果关系几乎不可能,因而因果关系消失了,相关关系替代了因果关系。但我们也应看到,在大数据环境下,做相关性的研究也非常困难,几十万个样本规模,几十万个维度,甚至更多,怎么计算相关系数?如果不用相关系数,用什么方法?


相关关系是比因果关系更宽泛的概念,事物之间有相关关系不一定存在因果关系,有因果关系必定有相关关系。相关分析是因果分析的基础,因果分析是相关分析的深化。大数据的相关关系不仅没有替代因果关系,反而给因果关系的研究提供了更广泛的发展空间。


医疗大数据、药物研发大数据、基因大数据给精准医疗、药物研究等领域带来一切变革,但仅靠相关关系很难找到病因,无法对症下药,药物的研发也很难针对各种病症,当然也不需要建立起因果模型后再实践。阿司匹林是治疗感冒的药,后来人们发现这种药对预防心脑血管疾病有疗效,经过大量临床,发现阿司匹林对预防心脑血管疾病疗效显著,有相关关系。而后,对阿司匹林进行药理分析,才发现阿司匹林中含有治疗心脑血管疾病的药物成分,建立了因果关系。


那么我们期望大数据引来因果分析的一场革命吧。

 原文发布时间为:2016-12-03


本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
234 1
|
1月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
2月前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用
|
3月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
89 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
ly~
|
3月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
312 2
ly~
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
181 3
ly~
|
3月前
|
供应链 搜索推荐 大数据
大数据在零售业中的应用
在零售业中,大数据通过分析顾客的购买记录、在线浏览习惯等数据,帮助零售商理解顾客行为并提供个性化服务。例如,分析网站点击路径以了解顾客兴趣,并利用历史购买数据开发智能推荐系统,提升销售和顾客满意度。此外,大数据还能优化库存管理,通过分析销售数据和市场需求,更准确地预测需求,减少库存积压和缺货现象,提高资金流动性。
ly~
602 2
ly~
|
3月前
|
供应链 监控 搜索推荐
大数据的应用场景
大数据在众多行业中的应用场景广泛,涵盖金融、零售、医疗保健、交通物流、制造、能源、政府公共服务及教育等领域。在金融行业,大数据用于风险评估、精准营销、反欺诈以及决策支持;零售业则应用于商品推荐、供应链管理和门店运营优化等;医疗保健领域利用大数据进行疾病预测、辅助诊断和医疗质量评估;交通物流业通过大数据优化物流配送、交通管理和运输安全;制造业则在生产过程优化、设备维护和供应链协同方面受益;能源行业运用大数据提升智能电网管理和能源勘探效率;政府和公共服务部门借助大数据改善城市管理、政务服务及公共安全;教育行业通过大数据实现个性化学习和资源优化配置;体育娱乐业则利用大数据提升赛事分析和娱乐制作水平。
ly~
940 2
|
4月前
|
存储 数据可视化 大数据
大数据管理与应用
大数据管理与应用是一门融合数学、统计学和计算机科学的新兴专业,涵盖数据采集、存储、处理、分析及应用,旨在帮助企业高效决策和提升竞争力。核心课程包括数据库原理、数据挖掘、大数据分析技术等,覆盖数据处理全流程。毕业生可从事数据分析、大数据开发、数据管理等岗位,广泛应用于企业、金融及互联网领域。随着数字化转型加速,该专业需求旺盛,前景广阔。
220 5
|
4月前
|
存储 搜索推荐 大数据
大数据在医疗领域的应用
大数据在医疗领域有广泛应用,包括电子病历的数字化管理和共享,提升医疗服务效率与协同性;通过数据分析支持医疗决策,制定个性化治疗方案;预测疾病风险并提供预防措施;在精准医疗中深度分析患者基因组信息,实现高效治疗;在药物研发中,加速疗效和副作用发现,提高临床试验效率。此外,在金融领域,大数据的“4V”特性助力业务决策前瞻性,被广泛应用于银行、证券和保险的风险评估、市场分析及个性化服务中,提升运营效率和客户满意度。
518 6