【Nature封面文章】大脑词汇地图

简介:

早上好。今天赵思家真的是做了热腾腾的新鲜大脑早餐来赎罪了。昨天晚上国内的诸位在睡觉的时候,《自然》放了个大招。伯克利的一群人把常用词汇所对应的大脑区域给画出来了。换句话说,这就是个大脑词典的雏形!


你觉得我们离读心术还会远吗?


我也是刚刚无意刷到最新封面研究的配套视频 《The Brain Dictionary》(不过我觉得还是翻译成「大脑词汇地图」更为贴切)。太酷了。太酷了。太酷了。

之前就有研究发现,实际上在听拥有不同词义的词汇时,并不是只有语言中心Broca's area会被激活,而每个词也不仅仅是只对应一个大脑区域,而这相对应的大脑区域似乎与语义有一定关联。


美国加州伯克利大学的科学家将常见的985个英语词汇的相对应大脑区域给「画」了出来。7名志愿者躺在功能性核磁共振(fMRI)中两个多小时(妈呀!绝对是真爱!),过程中给他们播放一个有一万多字的故事。


他们的主要发现如下:


(1)词汇们分布在大脑四周,并没有一个绝对的语言区域


(2)意义相关的词语(譬如说「妻子」,和其他描述社会关系的词语(「家庭」「孩子」...))所激活的大脑区域很相似。


这近千的词汇被分为了12个不同类型:触觉(「手指」)、视觉(「黄色」)、数字(「四」)、地点(「体育馆」)、抽象(「自然的」)、时间(「分钟))、工作(「会议」)、暴力(「致死的」)、公共设施(「学校」)、精神(「睡觉」)、情感(「悲伤的」)和社会关系(「孩子」)。

如果一个词有多种语义,譬如说英文的「Top」(上)。当人听到这个词时,额叶(就是脑门那块的大脑)的额中回(middle frontal gyrus)那一小块区域会变得活跃,而其他和衣服、外表相关的词汇也聚集在此。




这个词也有「第一、首位」的意思。不出意外地,我们在与数字相关的区域(要靠近后脑勺一些),也能找到它。(为了方便展示词语的分布,下面的图都是将大脑的整个表面压平的样子)




top也和位置有关,所以另一个可以找到它的区域则是和建筑物相关的大脑区域。




把大脑两边都抻平了看看词义的分布:




下图相当于是上图的科研版本。那晶莹剔透的大脑。好美好美啊!!!(科学和艺术会是一对好cp)总觉得应该会很好吃...


图片来自原论文 Huth et al 2016


超酷吧?研究人员还将这个词汇地图的3D大脑模型上传到了网上:http://gallantlab.org/huth2016/。但从四个小时前它的服务器就瘫痪了。呵呵。


(3)令人惊讶的是,这个研究也发现,这些与词义想对应的区域是 双脑对称的,换句话说,这和过去一直以为的「左脑负责语义」这个认识相驳。


(4)做大脑成像研究,时常最令人沮丧的就是人与人之间的差异。而像这样细节度这么高、还是全脑扫描、而且还是听觉相关的语言研究*,画这样的地图特别难。而这个研究发现这份大脑词汇地图在人与人之间一致性很高。也就是说,你在这个人脑子里看到「四」的位置,基本和在另一个人脑子里看到「四」所对应的位置基本一样。这让这个研究有了更高的可靠性。


等以后能够将更多的词汇都找到对应的位置,甚至扩展到其他的语言,虽然还有很长很长的路要走,但不得不yy一下,我们离读心术是不是更近了一步呢?


————————————————

*这里解释一下,听觉相关的核磁共振成像研究不好做,因为核磁共振在扫描时会产生很大的噪音,而我们现在的耳机很难完全隔绝那个噪音。所以在设计实验时,一定要小心不能把我们的实验声音所带来的大脑活动和机器噪音所带来的大脑活动弄混淆了(虽然这不能完全避免)。


同是做脑成像的一定能理解这个头条的分量。外行都在刷图片,内行都去刷它的methods去了。


这样内外兼顾的好文章真是让我心情澎湃啊!

————————————————


这里使用的截图都来自《自然》的原视频:https://youtu.be/k61nJkx5aDQ。想到大家可能上有关挺麻烦的,我将视频搬到优酷上了(但这样实际上是不对的)。(暂时没有中文字幕,有时间翻译了再上传好了)

毕竟这真是个在人类大脑语义上突破性的研究,如果有能力阅读原文的快去:http://www.nature.com/nature/journal/v532/n7600/full/nature17637.html。


References:

Huth, A.G., de Heer, W.A., Griffiths, T.L., Theunissen, F.E., Gallant, J.L., 2016. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532, 453–458. doi:10.1038/nature17637


原文发布时间为:2016-04-28

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号


相关文章
|
9天前
|
机器学习/深度学习 计算机视觉 UED
ECCV 2024:像ChatGPT一样,聊聊天就能实现三维场景编辑
【10月更文挑战第26天】CE3D是一种基于大型语言模型的新型三维场景编辑方法,通过简单的文本提示实现对三维场景的灵活编辑。它结合了大型语言模型和视觉专家模型,具备灵活性、可扩展性和易用性,能够理解用户意图并实现逼真的编辑效果。实验结果表明,CE3D在多种编辑任务中表现出色,但仍有提升空间。
10 4
|
8天前
|
计算机视觉
ECCV 2024:新梦幻场景生成方法,高质量、视角一致、可编辑3D场景
【10月更文挑战第27天】DreamScene是一种新型的文本到3D场景生成框架,基于3D高斯模型。它通过形成模式采样(FPS)和渐进式三阶段相机采样策略,生成高质量、一致性和可编辑的3D场景。DreamScene在游戏、电影和建筑等行业具有巨大应用潜力,尽管在处理复杂场景时仍存在一些局限性。论文地址:https://arxiv.org/abs/2404.03575
17 1
|
3月前
|
机器学习/深度学习 计算机视觉
ICML 2024:人物交互图像,现在更懂你的提示词了,北大推出基于语义感知的人物交互图像生成框架
【8月更文挑战第30天】在计算机视觉和机器学习领域,人物交互图像生成一直充满挑战。然而,北京大学团队在ICML 2024上提出的SA-HOI(Semantic-Aware Human Object Interaction)框架带来了新突破。该框架通过评估人物姿态质量和检测交互边界区域,结合去噪与细化技术,显著提升了生成图像的合理性与质量。广泛实验表明,SA-HOI在多样化和细粒度的人物交互类别上表现出色,为该领域提供了新的解决方案。尽管存在数据集质量和计算复杂度等局限,未来仍有很大改进空间和应用潜力。
45 3
|
机器学习/深度学习 编解码 算法
【阿里云OpenVI-视觉生产系列之图片上色】照片真实感上色算法DDColor ICCV2023论文深入解读
图像上色是老照片修复的一个关键步骤,本文介绍发表在 ICCV 2023 上的最新上色论文 DDColor
2688 10
【阿里云OpenVI-视觉生产系列之图片上色】照片真实感上色算法DDColor ICCV2023论文深入解读
|
机器学习/深度学习 人工智能 自然语言处理
7 Papers & Radios | 一句话为视频加特效;迄今为止最全昆虫大脑图谱
7 Papers & Radios | 一句话为视频加特效;迄今为止最全昆虫大脑图谱
|
机器学习/深度学习 人工智能 自然语言处理
预测过去?DeepMind用AI复原古希腊铭文,登Nature封面
预测过去?DeepMind用AI复原古希腊铭文,登Nature封面
107 0
|
机器学习/深度学习 人工智能 数据可视化
MIT设计深度学习框架登Nature封面,预测非编码区DNA突变
MIT设计深度学习框架登Nature封面,预测非编码区DNA突变
108 0
|
机器学习/深度学习 人工智能 自然语言处理
超越诺奖?生物界「ChatGPT」首次实现从零合成全新蛋白,登Nature子刊!喂了2.8亿种氨基酸序列
超越诺奖?生物界「ChatGPT」首次实现从零合成全新蛋白,登Nature子刊!喂了2.8亿种氨基酸序列
109 0
|
数据采集 人工智能 监控
Nature封面:乘着AI的翅膀,数据「带飞」计算社会科学!
Data Is Not All You Need! 如今有海量数据可供研究,确保数据质量和隐私变得更加紧迫。本期的「Nature封面」介绍了新兴研究领域「计算社会科学」,讨论了如何用大数据集解决社会问题。
244 0
Nature封面:乘着AI的翅膀,数据「带飞」计算社会科学!
|
机器学习/深度学习 人工智能 自然语言处理
发表Nature封面论文「大脑语义地图」之后的研究进展
加州伯克利大学的 Jack Gallant 和他的团队(Gallant 认知、计算和系统神经科学实验室)终于成功绘制出大脑语义地图(985 个英语常用词汇语义)。
655 0
发表Nature封面论文「大脑语义地图」之后的研究进展
下一篇
无影云桌面