RuntimeError: Given groups=1, weight of size 64 128 1 7, expected input[16,

简介: RuntimeError: Given groups=1, weight of size 64 128 1 7, expected input[16,

如果输入和输出匹配的情况下有这样的错误,请检查在定义卷积的时候有没有名字重复的,


例:


("2conv1,3_bn1", ConvBN(channelNum * 4, channelNum * 2, [1, 3])),

2conv1,3_bn1这个是定义卷积的名字,如果存在重复的,则可能引起这样的错误。


目录
相关文章
RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
2534 0
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【Pytorch】Expected hidden[0] size (2, 136, 256), got [2, 256, 256]
文章解决了PyTorch中LSTM模型因输入数据的批次大小不一致导致的“Expected hidden[0] size”错误,并提供了两种解决方案:调整批次大小或在DataLoader中设置drop_last=True来丢弃最后一个不足批次大小的数据。
93 1
|
7月前
|
Linux Windows
【已解决】ValueError: num_samples should be a positive integer value, but got num_samples=0
【已解决】ValueError: num_samples should be a positive integer value, but got num_samples=0
成功解决ValueError: Found input variables with inconsistent numbers of samples: [86, 891]
成功解决ValueError: Found input variables with inconsistent numbers of samples: [86, 891]
Expected more than 1 value per channel when training, got input size torch.Size
因为模型中用了batchnomolization,训练中用batch训练的时候当前batch恰好只含一个sample,而由于BatchNorm操作需要多于一个数据计算平均值,因此造成该错误。
934 0
|
TensorFlow 算法框架/工具
解决TypeError: tf__update_state() got an unexpected keyword argument ‘sample_weight‘
解决TypeError: tf__update_state() got an unexpected keyword argument ‘sample_weight‘
286 0
解决TypeError: tf__update_state() got an unexpected keyword argument ‘sample_weight‘
|
机器学习/深度学习 PyTorch 算法框架/工具
解决Pytorch中RuntimeError: expected scalar type Double but found Float
解决Pytorch中RuntimeError: expected scalar type Double but found Float
2731 0
|
JSON 数据格式
ValueError: With n_samples=0, test_size=0.15 and train_size=None, the resulting train set will be em
ValueError: With n_samples=0, test_size=0.15 and train_size=None, the resulting train set will be em
531 0
ValueError: With n_samples=0, test_size=0.15 and train_size=None, the resulting train set will be em
|
PyTorch 算法框架/工具
pytorch报错 RuntimeError: The size of tensor a (25) must match the size of tensor b (50) at non-singleton dimension 1 怎么解决?
这个错误提示表明,在进行某个操作时,张量a和b在第1个非单例维(即除了1以外的维度)上的大小不一致。例如,如果a是一个形状为(5, 5)的张量,而b是一个形状为(5, 10)的张量,则在第二个维度上的大小不匹配。
4002 0