RuntimeError: Given groups=1, weight of size 64 128 1 7, expected input[16,

简介: RuntimeError: Given groups=1, weight of size 64 128 1 7, expected input[16,

如果输入和输出匹配的情况下有这样的错误,请检查在定义卷积的时候有没有名字重复的,


例:


("2conv1,3_bn1", ConvBN(channelNum * 4, channelNum * 2, [1, 3])),

2conv1,3_bn1这个是定义卷积的名字,如果存在重复的,则可能引起这样的错误。


目录
相关文章
|
机器学习/深度学习 算法 Python
【DYConv】CVPR2020 | 即插即用的动态卷积模块助力你涨点
【DYConv】CVPR2020 | 即插即用的动态卷积模块助力你涨点
1607 1
【DYConv】CVPR2020 | 即插即用的动态卷积模块助力你涨点
|
机器学习/深度学习 自然语言处理 数据可视化
UNet家族最强系列 | UNet、UNet++、TransUNet与SWin-UNet究竟哪个更强!!!
UNet家族最强系列 | UNet、UNet++、TransUNet与SWin-UNet究竟哪个更强!!!
2768 0
|
XML 存储 JSON
YOLOv5的Tricks | 【Trick15】使用COCO API评估模型在自己数据集的结果
YOLOv5的Tricks | 【Trick15】使用COCO API评估模型在自己数据集的结果
2986 0
YOLOv5的Tricks | 【Trick15】使用COCO API评估模型在自己数据集的结果
|
机器学习/深度学习 并行计算 计算机视觉
YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)
YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)
10421 1
YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)
|
机器学习/深度学习 编解码 PyTorch
CVPR 2023 | 主干网络FasterNet 核心解读 代码分析
本文分享来自CVPR 2023的论文,提出了一种快速的主干网络,名为FasterNet。核心算子是PConv,partial convolution,部分卷积,通过减少冗余计算和内存访问来更有效地提取空间特征。
9713 58
|
7月前
|
机器学习/深度学习 资源调度 算法
YOLOv11改进策略【损失函数篇】| 引入Soft-NMS,提升密集遮挡场景检测精度,包括GIoU-NMS、DIoU-NMS、CIoU-NMS、SIoU-NMS、 EIou-NMS
YOLOv11改进策略【损失函数篇】| 引入Soft-NMS,提升密集遮挡场景检测精度,包括GIoU-NMS、DIoU-NMS、CIoU-NMS、SIoU-NMS、 EIou-NMS
3007 6
|
开发者 Python
【Python】已解决:TypeError: __init__() got an unexpected keyword argument ‘port’
【Python】已解决:TypeError: __init__() got an unexpected keyword argument ‘port’
2277 0
【Python】已解决:TypeError: __init__() got an unexpected keyword argument ‘port’
|
机器学习/深度学习 人工智能 PyTorch
AI计算机视觉笔记三十二:LPRNet车牌识别
LPRNet是一种基于Pytorch的高性能、轻量级车牌识别框架,适用于中国及其他国家的车牌识别。该网络无需对字符进行预分割,采用端到端的轻量化设计,结合了squeezenet和inception的思想。其创新点在于去除了RNN,仅使用CNN与CTC Loss,并通过特定的卷积模块提取上下文信息。环境配置包括使用CPU开发板和Autodl训练环境。训练和测试过程需搭建虚拟环境并安装相关依赖,执行训练和测试脚本时可能遇到若干错误,需相应调整代码以确保正确运行。使用官方模型可获得较高的识别准确率,自行训练时建议增加训练轮数以提升效果。
1318 4
|
机器学习/深度学习 人工智能 文字识别
一种基于YOLOv8改进的高精度红外小目标检测算法 (原创自研)
【7月更文挑战第2天】 💡💡💡创新点: 1)SPD-Conv特别是在处理低分辨率图像和小物体等更困难的任务时优势明显; 2)引入Wasserstein Distance Loss提升小目标检测能力; 3)YOLOv8中的Conv用cvpr2024中的DynamicConv代替;
1071 4

热门文章

最新文章