带你读《存储漫谈Ceph原理与实践》第一章分布式存储概述1.1存储系统的架构演进(二)

简介: 带你读《存储漫谈Ceph原理与实践》第一章分布式存储概述1.1存储系统的架构演进

1.1.2 分布式存储系统

分布式存储最早由谷歌提出,其目的是通过廉价的商用服务器来提供海量、弹性可扩展的数据存储系统。它将数据分散地存储到多台存储服务器上(服务器分布在企业的各个角落,并将这些分散的存储资源构成虚拟的存储设备。

1-5 展示了分布式存储系统的工作模式。

分布式存储架构通常由 3个部分组成:客户端、元数据服务器以及数据服务器。客户端负责发送读写请求、缓存文件元数据和文件数据;元数据服务器作为整个系统的核心组件,负责管理文件元数据和处理客户端的请求;数据服务器负责存放文件数据,保证数据的可用性和完整性。该架构的好处是存储系统整体的性能和容量能够随着系统内存储服务器的增加不断地近似线性扩展,系统具有很强的伸缩性。

1.  分布式存储的兴起


image.png

1-5分布式存储系统示意


    分布式存储系统的兴起与互联网的发展密不可分,互联网公司由于其数据增量大且初IT 投资相对较少,对大规模分布式存储系统有着强烈的业务需求以及使用意愿,期望通过规模效应降低数据的存储成本。

与传统建设方式中使用的高端服务器、高端存储器和高端处理器不同,互联网公司的分布式存储系统由数量众多、成本低廉、高性价比的普通服务器通过网络连接而成,其主要优势有以下3点。

1)系统可获得更好的scaleout 能力

互联网的业务发展速度快,而且更加注重成本开支,要求存储系统不能依靠传统的scaleup方式即先购买小型机,再购买中型机,甚至大型机)来满足业务数据的存储需求。互联网公司使用的分布式存储系统要求支持 scaleout 能力,即可以通过增加普通服务器的数量来提高系统的整体处理能力。

2)系统拥有更好的成本优势

普通服务器成本低廉,故障率相对较高,但分布式存储系统的分区容错性可保证存储集群因为故障而被分解为多个部分之后,存储系统整体仍然能够正常对外提供服务,软件层面的自动容错,可保证存储集群的数据一致性,互联网公司可最大限度地享受普通服务器带来的高性价比优势。

3)系统可获得更加线性的性能输出

随着服务器的不断加入,存储集群的计算、存储、网络服务能力都会线性增加,加之分布式存储系统在软件层面实现 I/O负载的自动均衡,存储系统的 I/O处理能力可以得到线性的扩展,对于新增的业务需求,互联网公司可以精确地估算新增资源投入,实现小   步快跑的资源建设,最优化资源的投入产出比。


2.  分布式存储的优势 

分布式存储系统自诞生以来,一直热度不减,被企业津津乐道并持续应用于核心生产系统,究其原因,分布式存储系统可带来如下优势。

1)系统计算处理能力更优

摩尔定律告诉人们:当价格不变时,集成电路上可容纳的元器件的数目,每隔 1824个月便会增加一倍,性能也将提升一倍,即随着时间的推移,单位成本支出所能购买的计   算能力在不断提升。换个角度,具体到某个固定时间点,单颗处理器的计算能力终究会有   上限,即使企业有意愿花更多的成本去购买计算能力,市场上也没有芯片能够满足其需求。分布式存储系统的架构允许数据分散存储在多台独立的服务器上,统一对外提供服务,可   以最大化利用系统所有资源,最优化均衡系统所有负载,消除热点,获得一致的性能表现,大大提升存储群集计算处理能力。

2)系统扩展能力更强

同上分析,具体到某个固定时间点来购买单颗不同型号的处理器,所购买的处理器性   能越高,所要付出的成本开销就越大,性价比就越低。即在一个确定的时间点,通过升级   硬件来提升性能会越来越不划算,简单地依靠计算能力的 scaleup来提升存储系统 I/O处理能力并非明智之举。分布式存储系统的 scaleout特性,允许存储系统纳管更多的服务器, 且随着纳管服务器数量的增加,存储系统的容量及性能可获得近似线性地提升,为存储系   统的容量扩展以及性能扩展提供可靠的技术保障。

3)系统稳定性更可靠

若采用单机系统,服务器一旦出现问题,那么系统就完全不能使用,无法满足生产环   境高可靠的需求。传统集中式存储的负载呈现出高度的不均衡性,即同一镜像的数据通常   分布在同一磁盘托架中,若控制器出现故障,存储对外服务性能将严重降级,且数据重建   期间,存储系统中的部分磁盘会承受很大的负载压力,重建耗时长,业务经受严重风险。   分布式存储系统将数据分散存储到多台独立的服务器上,无单点故障,单盘损坏后,全部   磁盘参与数据重建,分摊系统压力,对存储系统整体性能输出影响较小,可以最大限度地   降低业务风险。

 

3.   选择分布式存储的必然性

 

云存储和大数据是构建在分布式存储之上的应用:移动终端的计算能力和存储空间终究是有上限的,且在多个设备之间资源共享的需求也愈发强烈,这使得云网盘、云相册之类的云存储应用迅速蹿红,而云存储的核心仍是其后端便于数据共享访问的大规模分布式存储系统;大数据则更进一步,不仅需要存储海量数据,还需要通过合适的计算框架或者工具对这些数据进行分析,抽取数据中的价值,如果没有分布式存储,海量数据便没有了生存之地,更谈不上对数据进行分析。

由此可见,分布式存储系统是云存储和大数据发展的必然要求,继而也是IT技术发展的必然要求。

相关文章
|
12天前
|
运维 Cloud Native 测试技术
极氪汽车云原生架构落地实践
随着极氪数字业务的飞速发展,背后的 IT 技术也在不断更新迭代。极氪极为重视客户对服务的体验,并将系统稳定性、业务功能的迭代效率、问题的快速定位和解决视为构建核心竞争力的基石。
|
18天前
|
机器学习/深度学习 文字识别 监控
安全监控系统:技术架构与应用解析
该系统采用模块化设计,集成了行为识别、视频监控、人脸识别、危险区域检测、异常事件检测、日志追溯及消息推送等功能,并可选配OCR识别模块。基于深度学习与开源技术栈(如TensorFlow、OpenCV),系统具备高精度、低延迟特点,支持实时分析儿童行为、监测危险区域、识别异常事件,并将结果推送给教师或家长。同时兼容主流硬件,支持本地化推理与分布式处理,确保可靠性与扩展性,为幼儿园安全管理提供全面解决方案。
|
1月前
|
资源调度 监控 调度
基于SCA的软件无线电系统的概念与架构
软件通信体系架构(SCA)是基于软件定义无线电(SDR)思想构建的开放式、标准化和模块化平台,旨在通过软件实现通信功能的灵活配置。SCA起源于美军为解决“信息烟囱”问题而推出的联合战术无线电系统(JTRS),其核心目标是提升多军种联合作战通信能力。 上海介方信息公司的OpenSCA操作环境严格遵循SCA4.1/SRTF标准,支持高集成、嵌入式等场景,适用于军用通信、雷达等领域。 SCA体系包括目标平台资源层(TRL)、环境抽象层(EAL)、SRTF操作环境(OE)及应用层(AL)。其中,SRTF操作环境包含操作系统、运行时环境(RTE)和核心框架(CF),提供波形管理、资源调度等功能。
【YashanDB知识库】如何排查YMP报错:”OCI版本为空或OCI的架构和本地系统的架构不符“
【YashanDB知识库】如何排查YMP报错:”OCI版本为空或OCI的架构和本地系统的架构不符“
【YashanDB知识库】如何排查YMP报错:”OCI版本为空或OCI的架构和本地系统的架构不符“
|
11天前
|
弹性计算 负载均衡 网络协议
阿里云SLB深度解析:从流量分发到架构优化的技术实践
本文深入探讨了阿里云负载均衡服务(SLB)的核心技术与应用场景,从流量分配到架构创新全面解析其价值。SLB不仅是简单的流量分发工具,更是支撑高并发、保障系统稳定性的智能中枢。文章涵盖四层与七层负载均衡原理、弹性伸缩引擎、智能DNS解析等核心技术,并结合电商大促、微服务灰度发布等实战场景提供实施指南。同时,针对性能调优与安全防护,分享连接复用优化、DDoS防御及零信任架构集成的实践经验,助力企业构建面向未来的弹性架构。
146 76
|
13天前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
175 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
12天前
|
人工智能 自然语言处理 安全
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
CodeAct是一种先进的AI辅助系统范式,深度融合自然语言处理与代码执行能力。通过自定义代码执行代理,开发者可精准控制代码生成、执行及管理流程。本文基于LlamaIndex框架构建CodeAct Agent,解析其技术架构,包括代码执行环境、工作流定义系统、提示工程机制和状态管理系统。同时探讨安全性考量及应用场景,如软件开发、数据科学和教育领域。未来发展方向涵盖更精细的代码生成、多语言支持及更强的安全隔离机制,推动AI辅助编程边界拓展。
55 3
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
|
11天前
|
Cloud Native Serverless 流计算
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
79 12
|
6天前
|
人工智能 自然语言处理 API
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
136 4
|
25天前
|
运维 供应链 前端开发
中小医院云HIS系统源码,系统融合HIS与EMR功能,采用B/S架构与SaaS模式,快速交付并简化运维
这是一套专为中小医院和乡镇卫生院设计的云HIS系统源码,基于云端部署,采用B/S架构与SaaS模式,快速交付并简化运维。系统融合HIS与EMR功能,涵盖门诊挂号、预约管理、一体化电子病历、医生护士工作站、收费财务、药品进销存及统计分析等模块。技术栈包括前端Angular+Nginx,后端Java+Spring系列框架,数据库使用MySQL+MyCat。该系统实现患者管理、医嘱处理、费用结算、药品管控等核心业务全流程数字化,助力医疗机构提升效率和服务质量。

热门文章

最新文章